
Data III, Integers I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● HW 2 due today (11:59pm)

● Due Friday:

○ RD 5 (1pm)

○ HW 3 (11:59pm)

● Due Monday:

○ RD 6 (1pm)

○ HW 4 (11:59pm)

2

Recap: CPU and Memory

a. How does the CPU find its data in memory?

b. How are common C types encoded?

c. How can we use C to manipulate data in memory?

3

Review Questions

1. Compute the result of the following expressions for char c = 0x81;

● c ^ c

● ~c & 0xA9

● c || 0x80

● !!c

2. Compute the decimal value of signed char sc = 0xF0; (using 2’s

complement)

4

Logical Operators (Review)

● No boolean type in C by default

○ All non-zero values are treated as “true,” zero is “false”

○ Result is always a 1 or 0

● AND (&&), OR (||), NOT (!)

&& (AND) F T

F F F

T F T

|| (OR) F T

F F T

T T T

! (NOT)

F T

T F

5

Bitwise Operators (Review)

● Apply the given operation (AND, OR, NOT, XOR) to each bit of a value

separately

○ Ex: 0xA | 0x3 = 0b1010 | 0b0011 = 0b1011 = 0xB

& (AND) 0 1

0 0 0

1 0 1

| (OR) 0 1

0 0 1

1 1 1

^ (XOR) 0 1

0 0 1

1 1 0

~ (NOT)

0 1

1 0

6

Bitmasks

● We can use binary bitwise operators (&, |, ^) along with a specially chosen

bitmask in order to read or write to particular bits in a piece of data

Useful operations - for any bit b (answer with 0, 1, b, or ~b):

b & 0 = ___ b ^ 0 = ___ b | 0 = ___

b & 1 = ___ b ^ 1 = ___ b | 1 = ___

7

Numerical Encoding Design Example

● Encode a standard deck of playing cards

○ 4 suits, 13 cards each = 52 total

● Operations to implement:

○ Which card is of higher value?

○ Are they the same suit?

● First: how to represent?

8

Naive Approach

● Binary encoding of 52 cards - only 6 bits needed

○ 26 = 64 >= 52

○ Fits in one byte

● Just count cards in binary

● Problem: hard to compare value & suit

9

Binary Suit & Value

000000 Ace of Clubs

000001 Ace of Diamonds

000010 Ace of Hearts

000011 Ace of Spades

… …

110010 King of Hearts

110011 King of Spades

Better Approach: Fields

● Separate binary encodings of suit (2 bits) and value (4 btis)

○ Still fits in one byte, easier to do comparisons

10

Compare Card Suits
#define SUIT_MASK = 0x30 // 0b00110000

int same_suit(char card1, char card2) {

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

}

11

Compare Card Suits (pt 2)
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

0 0 0 1 0 0 1 0

&
0 0 1 1 0 0 0 0

=
0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 1

&
0 0 1 1 0 0 0 0

=
0 0 0 1 0 0 0 0

^
0 0 0 0 0 0 0 0

!
0 0 0 0 0 0 0 1

12

Compare Card Suits: Equivalent Technique
return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

0 0 0 1 0 0 1 0

&
0 0 1 1 0 0 0 0

=
0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 1

&
0 0 1 1 0 0 0 0

=
0 0 0 1 0 0 0 0

==

0 0 0 0 0 0 0 1

13

Compare Card Values
#define VALUE_MASK = 0x0F // 0b00001111

int greater_value(char card1, char card2) {

return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

}

14

Compare Card Values
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

0 0 0 1 0 0 1 0

&
0 0 0 0 1 1 1 1

=
0 0 0 0 0 0 1 0

0 0 0 1 1 1 0 1

&
0 0 0 0 1 1 1 1

=
0 0 0 0 1 1 0 1

>

0 0 0 0 0 0 0 0

15

Integers

16

Encoding Integers (Review)

● The hardware (and C) supports two flavors of integers

○ Unsigned - only non-negative numbers

○ Signed - positive and negative numbers

● By default, C ints are signed

○ Java only supports signed

● Reminder: we cannot represent all integers in a finite number of bits!

○ If our data type is w bits wide, we have 2w different encodings

○ Unsigned values: 0 … 2w - 1

○ Signed values: -2w-1 … 2w-1 - 1

17

Unsigned Integers (Review)

● Just like the binary->base 10 conversion from day 1

b7b6b5b4b3b2b1b0 = b7*2
7 + b6*2

6 + … + b1*2
1 + b0*2

0

● Arithmetic: just add like “normal”

○ If sum exceeds 1 bit, carry over to the next

Ex: 4+5 = 9

18

How do we represent signed integers?

● Historically, different machines did this different ways

○ Sign and magnitude

○ 1’s complement

○ 2’s complement

19

Sign and Magnitude (Review)

● Designate highest-order (most-significant) bit to

represent sign

○ Sign = 0: positive number

■ 0x7F = 0b01111111 = positive 0b1111111 = 127

○ Sign = 1: negative number

■ 0xFF = 0b11111111 = negative 0b1111111 = -127

● Benefits:

○ Positive numbers have the same encoding as their

unsigned equivalents

○ 0x00 = 0

○ Easy to tell the sign of a number

Not used in practice

for integers!

20

Sign and Magnitude (pt 2)

● Drawbacks?

21

Sign and Magnitude (pt 2)

● Drawbacks:

○ Two representations of 0 (bad for checking equality)

0x00 = 0b0000000 = positive 0b0000000 = “positive” 0

0x80 = 0b1000000 = positive 0b0000000 = “negative” 0

Not used in practice

for integers!

22

Sign and Magnitude (pt 3)

● Drawbacks:

○ Two representations of 0 (bad for checking equality)

○ Arithmetic is cumbersome

■ Negative numbers increment in the wrong

direction

Ex: 4-3 != 4+(-3)

Not used in practice

for integers!

23

Two’s Complement

● Let’s fix these problems:

1. Flip negative encodings so incrementing

works

a. This is called “one’s complement”

24

Two’s Complement (pt 2)

● Let’s fix these problems:

1. Flip negative encodings so incrementing

works

2. Shift negative encodings over by 1 to

eliminate double-0

● Still has a lot of the same benefits as sign-

magnitude

○ Positive values still the same as unsigned

○ MSB still indicates sign!

■ 0 is treated as “positive”, so we can represent

one more negative number than positive

25

Two’s Complement Negatives (Review)

● Accomplished with one neat mathematical trick!

○ Most-significant bit has negative weight

● 4-bit example:

○ 10102 unsigned:

■ 1*23 + 0*22 + 1*21 + 0*20 = 10

○ 10102 two’s complement:

■ -1*23 + 0*22 + 1*21 + 0*20 = -6

● -1 is represented as 11..112

○ MSB makes it “super negative,” need to add as much positive value as possible to get

to -1

● Easy trick to negate: just flip the bits and add 1!

26

Polling Question

Take the 4-bit number encoding x = 0b1011

Which of the following numbers is NOT a valid interpretation of x using any of the

number representation schemes discussed today? (Unsigned, Sign and

Magnitude, or 2’s Complement)

A) -4

B) -5

C) 11

D) -3

E) We’re lost…

27

Discussion

● Discuss these questions in groups of 2-4

○ We’ll discuss as a class afterwards, so be prepared to share out

○ Please be respectful of others’ opinions and experiences

● Java was designed to only support signed ints

○ Why might the designers of Java chosen this?

○ What are some benefits and drawbacks of this decision?

○ What does this tell you about the implicit values embedded in C vs Java?

28

Summary

● Bitwise operators allow for fine-grained manipulations of data

○ Bitwise AND (&), OR (|), and NOT (~) are different than logical AND (&&), OR (||), and

NOT (!)

○ Useful for bitmasks

● Choice of encoding scheme is important

○ Tradeoffs based on size requirements and desired operations

● Integers are represented using unsigned and two’s complement

representations

○ Sign and Magnitude no longer used for integers

○ Limited by fixed bit width

29

	Slide 1: Data III, Integers I
	Slide 2: Administrivia
	Slide 3: Recap: CPU and Memory
	Slide 4: Review Questions
	Slide 5: Logical Operators (Review)
	Slide 6: Bitwise Operators (Review)
	Slide 7: Bitmasks
	Slide 8: Numerical Encoding Design Example
	Slide 9: Naive Approach
	Slide 10: Better Approach: Fields
	Slide 11: Compare Card Suits
	Slide 12: Compare Card Suits (pt 2)
	Slide 13: Compare Card Suits: Equivalent Technique
	Slide 14: Compare Card Values
	Slide 15: Compare Card Values
	Slide 16: Integers
	Slide 17: Encoding Integers (Review)
	Slide 18: Unsigned Integers (Review)
	Slide 19: How do we represent signed integers?
	Slide 20: Sign and Magnitude (Review)
	Slide 21: Sign and Magnitude (pt 2)
	Slide 22: Sign and Magnitude (pt 2)
	Slide 23: Sign and Magnitude (pt 3)
	Slide 24: Two’s Complement
	Slide 25: Two’s Complement (pt 2)
	Slide 26: Two’s Complement Negatives (Review)
	Slide 27: Polling Question
	Slide 28: Discussion
	Slide 29: Summary

