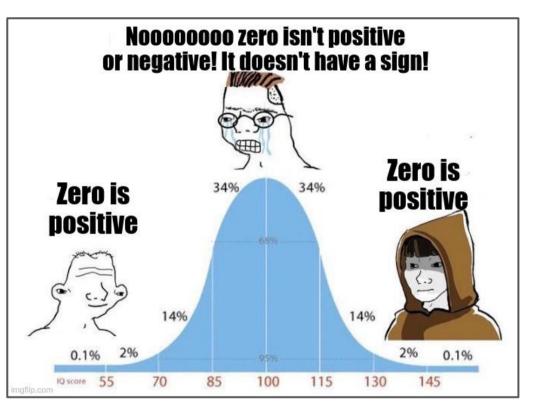
Data III, Integers I

CSE 351 Summer 2024

Instructor: Ellis Haker

Teaching Assistants:

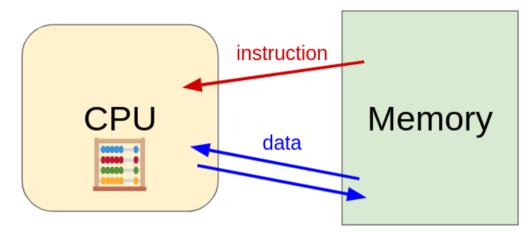
Naama Amiel Micah Chang Shananda Dokka Nikolas McNamee Jiawei Huang



Administrivia

- HW 2 due today (11:59pm)
- Due Friday:
 - RD 5 (1pm)
 - HW 3 (11:59pm)
- Due Monday:
 - RD 6 (1pm)
 - HW 4 (11:59pm)

Recap: CPU and Memory



- a. How does the CPU find its data in memory?
- b. How are common C types encoded?
- c. How can we use C to manipulate data in memory?

Review Questions 0510000001 1. Compute the result of the following expressions for char $c = 0 \times 81$; withing c t c - anything XOR iterelf = (Q) 10: + mine x c & 0xA9 ~ c= v 0111100 → & w/ v lalo loul = 04 00 101000 = 10×25 Not • c || 0x80 c and 0x80 are both True, True OR True = True = 1 logical L'exical NOT C= The, SO NOTC= Falso, NOT(Not c) = True = 2. Compute the decimal value of signed char $sc = 0 \times F0$; (using 2's 6) ~ 0× FO +1= 060000 1111+1 complement) = al corlaoga = 16 Zwors: -sc =16, so sc= -10 -) UXFO = UL [[1 0000 = -27+2 +2 +2 +2 - -16]

Logical Operators (Review)

- No boolean type in C by default
 - All non-zero values are treated as "true," zero is "false"
 - Result is always a 1 or 0
- AND (&&), OR (||), NOT (!)

&& (AND)	F	т	(OR)	F	т		! (NOT)	
F	F	F	F	F	Т	-	F	Т
т	F	Т	т	Т	т		т	F

Bitwise Operators (Review)

- ┟ Apply the given operation (AND, OR, NOT, XOR) to each bit of a value separately
 - Ex: 0×A | 0×3 = 0b1010 | 0b0011 = 0b1011 = 0×B 0

& (AND)	0	1	(OR)	0	1	^ (XOR)	0	1	~ (NOT)	
0	0	0	0	0	1	0	0	1	0	1
1	0	1	1	1	1	1	1	0	1	0

Bitmasks

• We can use binary bitwise operators (&, |, ^) along with a specially chosen **bitmask** in order to read or write to particular bits in a piece of data

Useful operations - for any bit *b* (answer with 0, 1, *b*, or $\sim b$):

$$b \& 0 = 0$$

$$set some hits \qquad b^{0} = b$$

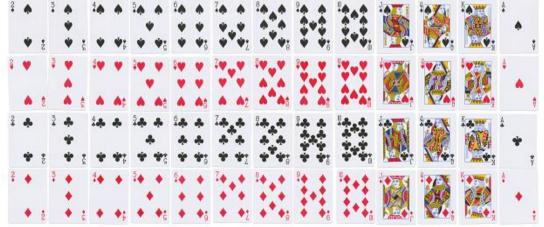
$$here the to 0, \\ here the trest the trest the some b^{0} = b$$

$$b^{0} = b$$

Numerical Encoding Design Example

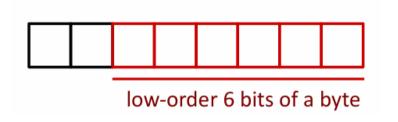
- Encode a standard deck of playing cards
 - \circ 4 suits, 13 cards each = 52 total
- Operations to implement:
 - Which card is of higher value?
 - Are they the same suit?
- First: how to represent?

want to keep our representation <_ 1 byte



Naive Approach

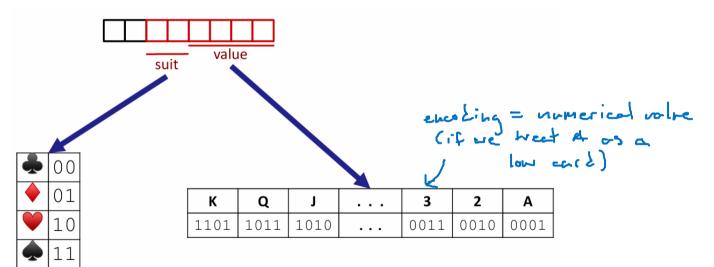
- Binary encoding of 52 cards only 6 bits needed
 - \circ 2⁶ = 64 >= 52
 - Fits in one byte
- Just count cards in binary
- Problem: hard to compare value & suit



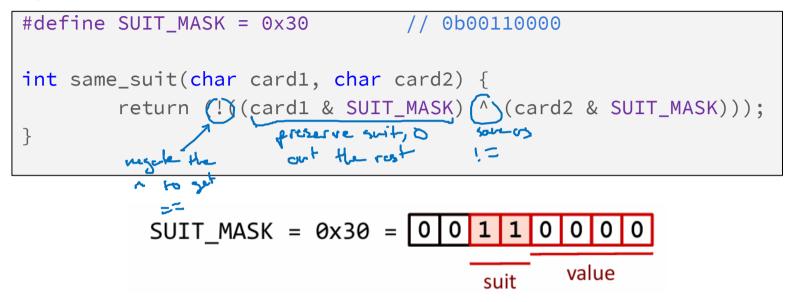
Binary	Suit & Value
000000	Ace of Clubs
000001	Ace of Diamonds
000010	Ace of Hearts
000011	Ace of Spades
110010	King of Hearts
110011	King of Spades

Better Approach: Fields

- Separate binary encodings of suit (2 bits) and value (4 btis)
 - Still fits in one byte, easier to do comparisons

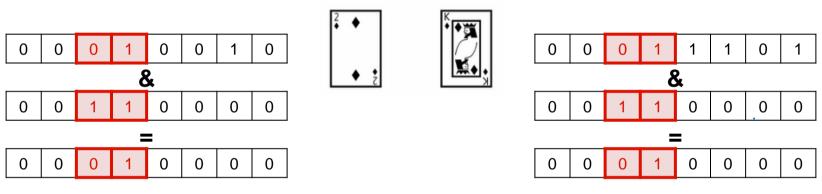


Compare Card Suits

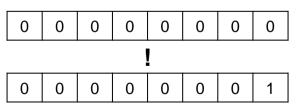


Compare Card Suits (pt 2)

return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));

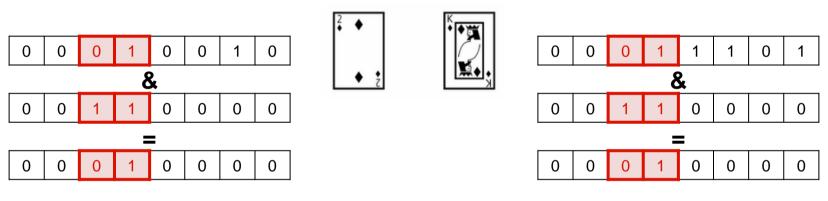


Λ

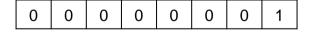


Compare Card Suits: Equivalent Technique

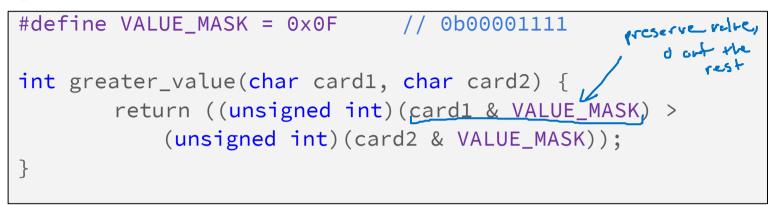
return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);



==

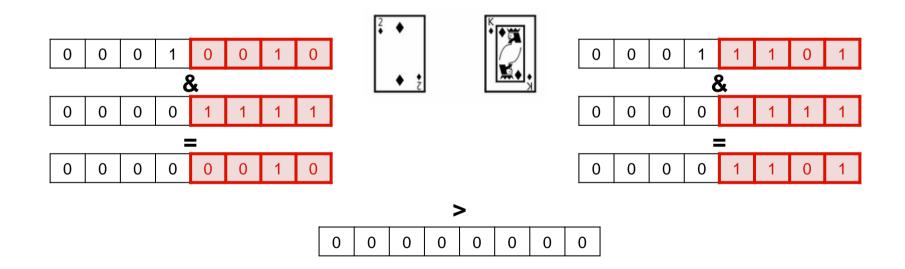


Compare Card Values



Compare Card Values

return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));



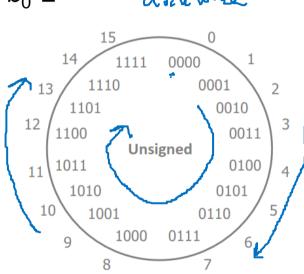
Encoding Integers (Review)

- The hardware (and C) supports two flavors of integers
 - **Unsigned** only non-negative numbers
 - Signed positive and negative numbers
- By default, C ints are signed can specify (ex: maigned int, signed buy, etc.)
 - Java only supports signed
- Reminder: we cannot represent all integers in a finite number of bits!
 - If our data type is w bits wide, we have 2^w different encodings
 - Unsigned values: $0 \dots 2^{w}$ 1
 - Signed values: -2^{*w*-1} ... 2^{*w*-1} 1

Unsigned Integers (Review)

- Just like the binary->base 10 conversion from day 1 $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 = b_7^* 2^7 + b_6^* 2^6 + \dots + b_1^* 2^1 + b_0^* 2^0$
- Arithmetic: just add like "normal"
 - If sum exceeds 1 bit, carry over to the next

- + 0b0101
- = 0b1001



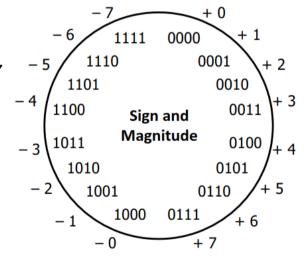
How do we represent signed integers?

- Historically, different machines did this different ways
 - Sign and magnitude
 - 1's complement
 - 2's complement

what's currently used

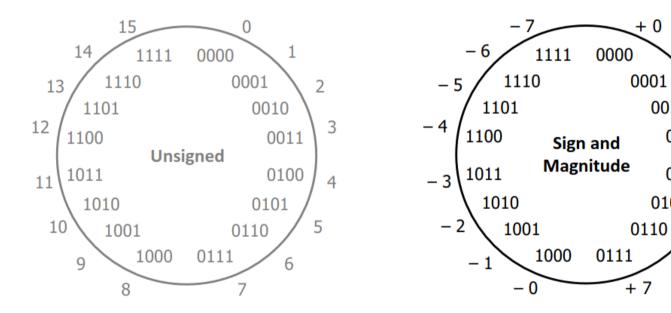
Sign and Magnitude (Review)

- Designate highest-order (most-significant) bit to represent sign
 - Sign = 0: positive number
 - 0x7F = 0b<u>0</u>1111111 = positive 0b1111111 = 127
 - Sign = 1: negative number
 - 0xFF = 0b<u>1</u>1111111 = negative 0b1111111 = -127
- Benefits:
 - Positive numbers have the same encoding as their unsigned equivalents
 - 0x00 = 0
 - Easy to tell the sign of a number



Sign and Magnitude (pt 2)

Drawbacks?



+ 0

+ 1

0010

0101

0011

0100

+ 6

+ 2

+ 3

+ 4

+ 5

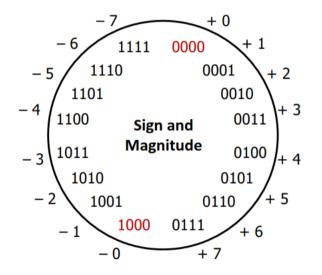
Sign and Magnitude (pt 2)

Not used in practice for integers!

- Drawbacks:
 - Two representations of 0 (bad for checking equality)

0x00 = 0b<u>0</u>000000 = positive 0b0000000 = "positive" 0

0x80 = 0b<u>1</u>000000 = positive 0b0000000 = "negative" 0



Sign and Magnitude (pt 3)

- Drawbacks:
 - Two representations of 0 (bad for checking equality) Ο
 - Arithmetic is cumbersome Ο
 - Negative numbers increment in the wrong direction

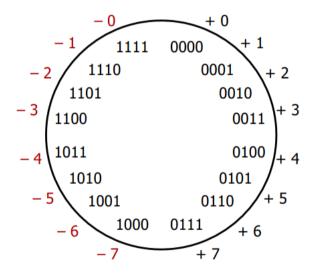
- 1011 0100 4 4
- 3 0011
- 0001 =

$$+ 0100 -$$

Two's Complement

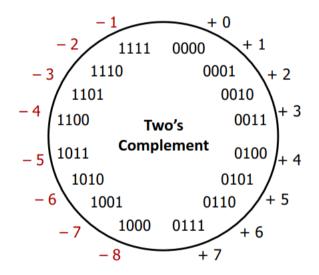
- Let's fix these problems:
 - 1. Flip negative encodings so incrementing works
 - a. This is called "one's complement"

you don't need to know this, just a fam fact i



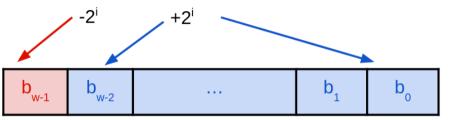
Two's Complement (pt 2)

- Let's fix these problems:
 - Flip negative encodings so incrementing works
 - 2. Shift negative encodings over by 1 to eliminate double-0
- Still has a lot of the same benefits as signmagnitude
 - Positive values still the same as unsigned
 - MSB still indicates sign!
 - 0 is treated as "positive", so we can represent one more negative number than positive



Two's Complement Negatives (Review)

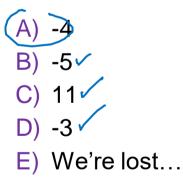
- Accomplished with one neat mathematical trick!
 - Most-significant bit has negative weight
- 4-bit example:
 - \circ 1010₂ unsigned:
 - $\bullet 1^{*}2^{3} + 0^{*}2^{2} + 1^{*}2^{1} + 0^{*}2^{0} = \mathbf{10}$
 - \circ **1010**₂ two's complement:
 - $-1^{*}2^{3} + 0^{*}2^{2} + 1^{*}2^{1} + 0^{*}2^{0} = -6$
- -1 is represented as 11..11₂
 - MSB makes it "super negative," need to add as much positive value as possible to get to -1
- Easy trick to negate: just flip the bits and add 1!



Polling Question

Take the 4-bit number encoding x = 0b1011

Which of the following numbers is **NOT** a valid interpretation of x using any of the number representation schemes discussed today? (Unsigned, Sign and Magnitude, or 2's Complement) $usigned : z^2 + z^2 + z^2 = 1$



$$unsights! Z + Z + Z = 11$$

sign-mod! - (z'+2°) = -3

Discussion

- Discuss these questions in groups of 2-4
 - We'll discuss as a class afterwards, so be prepared to share out
 - Please be respectful of others' opinions and experiences
- Java was designed to only support signed ints
 - Why might the designers of Java chosen this?
 - What are some benefits and drawbacks of this decision?
 - What does this tell you about the implicit values embedded in C vs Java?

Jova's prioritics' - ene of use - partability - beginver-friendly L'a prioritics! - efficiency - programmer freedom - close to hardwore

C

Summary

- Bitwise operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (~) are *different* than logical AND (&&), OR (||), and NOT (!)
 - Useful for bitmasks
- Choice of *encoding scheme* is important
 - Tradeoffs based on size requirements and desired operations
- Integers are represented using unsigned and two's complement representations
 - Sign and Magnitude no longer used for integers
 - Limited by fixed bit width