
Memory, Data, & Addressing II
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● HW 1 and Lab 0 due tonight (11:59pm)

● Due Wednesday, 6/26:

○ RD 4 (1pm)

○ HW 2 (11:59pm)

● Lab 1a out now!

○ Due 7/3 (late due date 7/5), turn in on Gradescope

○ Can be completed with a partner

■ Turn in one submission for the both of you

2

Reminder: Lab Late Days

● You get 5 free late days for the quarter

○ Late days only apply to labs

○ No benefit to having leftover late days

○ If working with a partner, every counts towards both of your late days

● Count lateness in days (even if just by a second)

○ Weekends count as 1 day

○ No submissions accepted more than 2 days late

● Once free late days are used up, deduct 10% per day

● Use at your own risk - don’t want to fall to far behind

○ Intended to allow for unexpected circumstances

3

Recap: CPU and Memory

a. How does the CPU find its data in memory?

b. How are common C types encoded?

c. How can we use C to manipulate data in memory?

4

Lecture Outline

● Assignment in C

○ Memory example

● More pointers

○ Pointer arithmetic

● Arrays

○ Memory example

○ Arrays and pointers

● Strings

● Box-and-arrow diagrams

5

Review Question

In the code on the right, which of the

following expressions evaluate to an

address?

A) x + 10

B) p + 10

C) &x + 10

D) *(&p)

E) ar[1]

F) &ar[2]

int x = 351;

char* p = &x;

int ar[3];

6

Assignment in C

● A variable is represented by a location

● Declaration ≠ initialization!

○ Initially “garbage” or “mystery data”

Example:

int x, y;

(x is at address 0x00, y is at address 0x08)

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 00 01 29 F3

0x04 A7 00 32 00

0x08 01 00 00 00

0x0C DE AD BE EF

0x10 26 00 00 00

0x14 EE EE EE EE

x

y

7

Assignment in C (pt 2)

● A variable is represented by a location

● Declaration ≠ initialization!

○ Initially “garbage” or “mystery data”

Example:

int x, y;

(x is at address 0x00, y is at address 0x08)

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 00 01 29 F3

0x04 A7 00 32 00

0x08 01 00 00 00

0x0C DE AD BE EF

0x10 26 00 00 00

0x14 EE EE EE EE

x

y

8

Assignment in C (pt 3)

● Left hand side = Right hand side
○ LHS must evaluate to a location

○ RHS must evaluate to a value

■ Could be an address, or any other data

○ Store RHS value at LHS location

Example:

int x, y;

x = 0;

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 00 00 00 00

0x04 A7 00 32 00

0x08 01 00 00 00

0x0C DE AD BE EF

0x10 26 00 00 00

0x14 EE EE EE EE

x

y

9

Assignment in C (pt 4)

● Left hand side = Right hand side
○ LHS must evaluate to a location

○ RHS must evaluate to a value

■ Could be an address, or any other data

○ Store RHS value at LHS location

Example:

int x, y;

x = 0;

y = 0x3CD02700;

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 00 00 00 00

0x04 A7 00 32 00

0x08 00 27 D0 3C

0x0C DE AD BE EF

0x10 26 00 00 00

0x14 EE EE EE EE

x

y

little-endian!

10

Assignment in C (pt 6)

● Left hand side = Right hand side
○ LHS must evaluate to a location

○ RHS must evaluate to a value

■ Could be an address, or any other data

○ Store RHS value at LHS location

Example:

int x, y;

x = 0;

y = 0x3CD02700;

x = y + 3; (compute y+3, then store into x)

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 03 27 D0 3C

0x04 A7 00 32 00

0x08 00 27 D0 3C

0x0C DE AD BE EF

0x10 26 00 00 00

0x14 EE EE EE EE

x

y

11

Assignment in C (pt 7)

Example:

int x, y;

x = 0;

y = 0x3CD02700;

x = y + 3;

int* z = &y + 3; (z stored at 0x0C)

(compute &y+3, and store into z?)

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 03 27 D0 3C

0x04 A7 00 32 00

0x08 00 27 D0 3C

0x0C DE AD BE EF

0x10 26 00 00 00

0x14 EE EE EE EE

x

y

z

12

Assignment in C (pt 8)

Example:

int x, y;

x = 0;

y = 0x3CD02700;

x = y + 3;

int* z = &y + 3; (z stored at 0x0C)

(compute &y+12, and store into z)

Pointer arithmetic!

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 03 27 D0 3C

0x04 A7 00 32 00

0x08 00 27 D0 3C

0x0C 14 00 00 00

0x10 26 00 00 00

0x14 EE EE EE EE

x

y

z

13

Pointer Arithmetic (Review)

● Pointer arithmetic is scaled by the size of the target type

○ In this example sizeof(int) = 4

● int* z = &y + 3;
○ Get address of y, add 3*sizeof(int), then store result in z

○ &y = 0x08 = 810

○ 3*4=12

○ 8+12 =20 = 0x14 (1*16 + 4)

● Pointer arithmetic can be dangerous!

○ Can easily lead to bad memory accesses

○ Be especially careful with casting

14

Assignment in C (pt 8)

Example:

int x, y;

x = 0;

y = 0x3CD02700;

x = y + 3;

int* z = &y + 3;

*z = y; (get value at y, put in address stored in z)

The dereference of a

pointer is also a location

32-bit example
(pointers are 4-bytes wide)

little-endian

0x0 0x1 0x2 0x3

0x00 03 27 D0 3C

0x04 A7 00 32 00

0x08 00 27 D0 3C

0x0C 14 00 00 00

0x10 26 00 00 00

0x14 00 27 D0 3C

x

y

z

15

Arrays in C (Review)

● Declaration: type name[size];
○ Example: int a[6];

○ Can also use initialization list: int a[] = {2, 4, 6, 8, 10};

● Indexing using brackets

○ i.e. a[n] gets the nth element of the array, counting from 0

● Stored as a single contiguous chunk of memory

○ Total size = size of data * number of elements

○ Variable name (a) evaluates to the starting address

○ Endianness only applies within a single element. Elements always stored in increasing

order

16

Arrays in C Example

Declaration: int a[6];

64-bit example
(pointers are 8-bytes wide)

little-endian

0x0

0x8

0x1

0x9

0x2

0xA

0x3

0xB

0x4

0xC

0x5

0xD

0x6

0xE

0x7

0xF

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

a[1]

a[3]

a[5]

17

Arrays in C Example (pt 2)

Declaration: int a[6];

Indexing: a[0] = 0x15F;

a[5] = a[0];

64-bit example
(pointers are 8-bytes wide)

little-endian

0x0

0x8

0x1

0x9

0x2

0xA

0x3

0xB

0x4

0xC

0x5

0xD

0x6

0xE

0x7

0xF

0x00

0x08

0x10 5F 01 00 00

0x18

0x20 5F 01 00 00

0x28

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

18

Arrays in C Example (pt 3)

Declaration: int a[6];

Indexing: a[0] = 0x15F;

a[5] = a[0];

a[6] = 0xBAD;

a[-1] = 0xBAD;

No bounds checking!!

64-bit example
(pointers are 8-bytes wide)

little-endian

0x0

0x8

0x1

0x9

0x2

0xA

0x3

0xB

0x4

0xC

0x5

0xD

0x6

0xE

0x7

0xF

0x00

0x08 AD 0B 00 00

0x10 5F 01 00 00

0x18

0x20 5F 01 00 00

0x28 AD 0B 00 00

0x30

0x38

0x40

0x48

a[0]

a[2]

a[4]

19

Arrays in C Example (pt 4)

Declaration: int a[6];

Indexing: a[0] = 0x15F;

a[5] = a[0];

a[6] = 0xBAD;

a[-1] = 0xBAD;

Pointers: int* p;

p = a;

p = &a[0];

p = 0x10;

equivalent

64-bit example
(pointers are 8-bytes wide)

little-endian

0x0

0x8

0x1

0x9

0x2

0xA

0x3

0xB

0x4

0xC

0x5

0xD

0x6

0xE

0x7

0xF

0x00

0x08 AD 0B 00 00

0x10 5F 01 00 00

0x18

0x20 5F 01 00 00

0x28 AD 0B 00 00

0x30

0x38

0x40 10 00 00 00 00 00 00 00

0x48

a[0]

a[2]

a[4]

p

20

Arrays and Pointer Arithmetic

● Both are scaled by the size of the type, so they can be used interchangeably!

○ Array indexing = pointer arithmetic + dereference

● Example: all of the following are equivalent

○ a[1] = 0xB

○ *(p+1) = 0xB

○ p[1] = 0xB

○ *(a+1) = 0xB

21

Polling Question

Consider the following code:

1 void main() {

2 int a[] = {0x5, 0x10};

3 int* p = a;

4 p = p + 1;

5 *p = *p + 1;

6 }

The variable values just after line 3

executes are shown in the diagram on

the right. What are they after line 5?

p a[0] a[1]

A) 0x101 0x05 0x11

B) 0x104 0x05 0x11

C) 0x101 0x06 0x10

D) 0x104 0x06 0x10

22

Representing Strings (Review)

● In C, stored as an array of bytes

(char*)

○ No String keyword, unlike in

Java

○ One-byte ASCII codes for each

character (English-only)

23

Representing Strings (Review) (pt 2)

● Last character followed by a null character to mark the end of the string

○ 0 byte, often written as ‘\0’

Example: “Sam is cool!”;

Decimal 83 97 109 32 105 115 32 99 111 111 108 33 0

Hex 0x53 0x61 0x6D 0x20 0x69 0x73 0x20 0x63 0x6F 0x6F 0x6C 0x21 0x00

Text ‘S’ ‘a’ ‘m’ ‘ ‘ ‘i’ ‘s’ ‘ ‘ ‘c’ ‘o’ ‘o’ ‘l’ ‘!’ ‘\0’

24

Endianness and Strings

● Endianness doesn’t apply to single-byte values (like chars)

● As with all arrays, element 0 is stored at the lowest address regardless of

endianness

Example: “12345”;

0x00 0x01 0x02 0x03 0x04 0x05

0x31 0x32 0x33 0x34 0x35 0x00

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘\0’

25

Examining Data Representations

● show_bytes prints out the byte representation of the data at start
○ Tread any data as a byte array by casting it to char*

■ C has unchecked casts. !! Danger !!

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++){

printf("%p\t0x%.2hhX\n", start+i, *(start+i));
printf("\n");

}

● printf directives: %p = print pointer \t = tab

%.2hh = print value as char in hex, padding to 2 digits \n = new line

26

Examining Data Representations (pt 2)

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++){

printf("%p\t0x%.2hhX\n", start+i, *(start+i));
printf("\n");

}

void show_int(int x) {
show_bytes((char*) &x, sizeof(int));

}

27

show_bytes Execution Example

int main() {
int x = 123456; // 0x00 01 E2 40
printf("int x = %d;\n", x);
show_int(x);

}

● Result (Linux x86-64)
○ Note: addresses will change with each run (try it!), but fall in the same general range

28

Box-and-Arrow Diagrams (Review)

● Simplified way of drawing out memory

● Each variable is a box

○ If relevant, the address may be written above the box

● If a pointer points to another variable, draw an arrow between them

○ If relevant, may also write the address inside the pointer’s box

29

Polling Question

Consider the following code:

char* str = “hello”;

char* p = str;

*str = ‘j’;

p += 4;

*p = *p + 10;

After it’s finished, what will the value of str be? (Hint: draw a memory diagram!)
You may want to look up an ASCII encoding chart.

30

Summary

● Variables are represented by locations in memory

○ Assignment in C stores a value in that location

● Pointer arithmetic scales by the size of the target type

○ Convenient when scanning array-like structures in memory

○ Be careful when using! Particularly when casting to another pointer type

● Arrays are stored as contiguous blocks of memory

○ Unlike Java, C does not do bounds checking on arrays!!

○ Array indexing is equivalent to doing pointer arithmetic, then dereferencing the result

○ Strings are null-terminated arrays of ASCII characters

■ Unlike Java, no dedicated String type

31

	Slide 1: Memory, Data, & Addressing II
	Slide 2: Administrivia
	Slide 3: Reminder: Lab Late Days
	Slide 4: Recap: CPU and Memory
	Slide 5: Lecture Outline
	Slide 6: Review Question
	Slide 7: Assignment in C
	Slide 8: Assignment in C (pt 2)
	Slide 9: Assignment in C (pt 3)
	Slide 10: Assignment in C (pt 4)
	Slide 11: Assignment in C (pt 6)
	Slide 12: Assignment in C (pt 7)
	Slide 13: Assignment in C (pt 8)
	Slide 14: Pointer Arithmetic (Review)
	Slide 15: Assignment in C (pt 8)
	Slide 16: Arrays in C (Review)
	Slide 17: Arrays in C Example
	Slide 18: Arrays in C Example (pt 2)
	Slide 19: Arrays in C Example (pt 3)
	Slide 20: Arrays in C Example (pt 4)
	Slide 21: Arrays and Pointer Arithmetic
	Slide 22: Polling Question
	Slide 23: Representing Strings (Review)
	Slide 24: Representing Strings (Review) (pt 2)
	Slide 25: Endianness and Strings
	Slide 26: Examining Data Representations
	Slide 27: Examining Data Representations (pt 2)
	Slide 28: show_bytes Execution Example
	Slide 29: Box-and-Arrow Diagrams (Review)
	Slide 30: Polling Question
	Slide 31: Summary

