
Memory, Data, & Addressing I
CSE 351 Summer 2024

Instructor:

Ellis Haker

Teaching Assistants:

Naama Amiel

Micah Chang

Shananda Dokka

Nikolas McNamee

Jiawei Huang

1

Administrivia

● HW Deadlines changed

○ Now due 11:59pm instead of before lecture

○ Pre-lecture readings are still due at 1!

● Office hours are now available!

○ See calendar on the course website

● RD3 due 6/24 (Monday), before 1pm

● HW1 and Lab0 due 6/24 (Monday), before 11:59pm

○ Not like a normal lab - on Ed, individual only, no late days

○ You likely won’t understand much of what happens in this lab, and that’s ok!

■ We’ll revisit it throughout the quarter

2

Hardware: Physical View

3

Hardware: Logical View

4

Hardware: 351 View

CPU Memory

● The CPU executes instructions

● Memory is where data (including instructions) is stored

● How is data encoded? Binary encoding!

5

Hardware: 351 View (pt 2)

● To execute an instruction, the CPU must:

1. Fetch instruction

2. (if applicable) Fetch data needed for the instruction

3. Perform the computation

4. (if applicable) Write the result back to memory

CPU Memory

instruction

data

If you want to

know how this

works in

hardware, take

CSE/EE 469

6

Hardware: 351 View (pt 2)

● We’ll start by focusing on memory

a. How does the CPU know where to find its data?

b. How are common data types encoded?

c. How can we use C to manipulate data?

7

Review Questions (pt 1)

1. By looking at the bits stored in memory, I can tell what a particular 4 bytes is

used to represent.

A) True B) False

2. We can fetch a piece of data from memory as long as we have its address.

A) True B) False

8

Review Questions (pt 2)

3. Which of the following bytes have a most-significant bit (MSB) of 1?

A) 0x63 B) 0x90 C) 0xCA D) 0xD

4. Consider the following declared variables:

int x = 351;

char* p = &x;

How much space in memory does variable p take up (on a 64-bit machine)?

A) 1 byte B) 2 bytes C) 4 bytes D) 8 bytes

9

Fixed-length Binary (Review)

● Because storage is finite, everything is stored as “fixed” length
○ Data is moved and manipulated in fixed-length chunks

○ Multiple fixed lengths (e.g., 1 byte, 4 bytes, 8 bytes)

○ Leading zeros now must be included up to “fill out” the fixed length

Example: the “eight-bit” (1-byte) representation of the number 4 is 0b00000100

Most significant bit (MSB)

Least significant bit (LSB)

10

Bits and Bytes and Things (Review)

● Useful Fact: n bits can represent up to 2n things

○ If we want to represent x things, we need n bits, where 2n >= x

Example: how many bits would we need to represent the letters a-z?

26 letters, so we need 5 bits (25 = 32 > 26)

● Sometimes (oftentimes?) the “things” we are representing are bytes!

11

Addresses in Memory (Review)

● You can think of memory as a single, large array of bytes, each with a unique

address (index)
○ Addresses are fixed-width

○ Amount of addressable memory = address space

● If addresses are a bits long, how many addresses are there?
○ So how big is the address space?

12

Machine “Words” (Review)

● Instructions are encoded in machine code (in binary)
○ Historically (and still true in some assembly languages), all instructions were exactly the

same size, we call this a word

● We have chosen to tie word size with address width
○ Still true for languages that don’t have fixed-width instructions: word size = address size

● Most modern systems use 64-bit (8-byte) words
○ Address space = 264 addresses, each represents a byte of data

○ 264 bytes = 1.8*1019 bytes = 18 EB (exabytes)

■ (Side note: your computer does not actually have this much memory! We’ll talk

about this more later)

13

Discussion Question

Over time, computers have grown in word size:

Word Size Instruction Set Architecture First Intel CPU Year Introduced

8-bit ?? (Poor & Pyle) Intel 8008 Early 70s

16-bit x86 Intel 8086 1978

32-bit IA-32 Intel 386 1985

64-bit IA-64 (2001), x86-64(2004) Itanium 2001

● What do you think are the causes, advantages, and disadvantages of this

trend?

14

Address of Multibyte Data

● Addresses still specify locations of bytes,

but we can choose to view memory as a

series of fixed-size chunks instead

○ Addresses of successive chunks differ by

data size

● The address of any chunk of memory is

the lowest address of the chunk

○ To specify a chunk, need both its address and

size

○ Typically aligned, meaning their starting

addresses are multiples of the data size

15

Byte Ordering (Review)

● How should bytes within a piece of data be ordered in memory?

○ Similar to writing in human languages

■ Ex: English reads left-right, but Arabic reads right-left

● By convention, ordering of bytes is called

endianness

○ Two options: big-endian and little-endian

○ Reference to Gulliver’s Travels: tribes cut their

eggs on different sides

16

Endianness

● Big-endian (SPARC, z/Architecture)
○ Least-significant byte at the highest address

● Little-endian (x86, x86-64)
○ Least-significant byte at the lowest address

● Bi-endian (ARM, PowerPC)
○ Endianness can be specified as either big or little

Example: 4-byte data 0xA1B2C3D4 at address 0x100

17

Polling Question

● We store the value 0x 01 02 03 04 as a word at address 0x100 in a big-

endian, 64-bit machine

● What is the byte of data stored at address 0x104?

A) 0x04

B) 0x40

C) 0x01

D) 0x10

E) We’re lost…

0x100 0x101 0x102 0x103 0x104 0x105 0x106 0x107

18

Endianness (pt 2)

● Endianness only applies to data storage

● Often, a programmer can ignored endianness because it is handled for them

○ Bytes wired into correct place when reading and storing from memory (hardware)

○ Compiler and assembler generate correct behavior (software)

● Endianness still shows up:

○ Logical issues: accessing different amount of data than how you stored it (e.g., store

int, access byte as a char)

○ Need to know exact values to debug memory errors

○ Manual translation of machine code

19

Data Representations in C

Java Data Type C Data Type 32-bit (old) 64-bit

boolean bool 1 1

byte char 1 1

char 2 2

short short/short int 2 2

int int 4 4

float float 4 4

long/long int 4 8

double double 8 8

long long long/long long

int

8 16

long double 8 16

(reference) pointer (*) 4 8

to use bool in C, must
#include <stdbool.h>

address size =

word size

20

Pointers in C (Review)

● Data type that stores an address

○ We say it points to the data at that address

● Declaration: <type>* <name>;
○ The star is part of the data type - indicates that it is a pointer

Example: int* ptr;

● Type of pointer tells you how to interpret the data at that address

○ Ex: a char* points to a char, an int* points to an int, etc.

● Probably unfamiliar to most of you, but not entirely new!

○ Java uses pointers to reference objects, it just hides this from the programmer

21

A Picture of Memory (64-bit view)

● A 64-bit (8-byte) aligned view of

memory, big endian

○ Each cell is one byte

○ Each row is composed of 8 bytes

○ The labels on the left are the starting

addresses of each row

22

Addresses and Pointers

● A pointer is a data object that holds

an address

○ Address can point to any data

Example:

● 8-byte value 504 (0x1F8) stored at

address 0x08

● Pointer stored at 0x38 points to the

data at 0x08

64-bit (8-byte) word

One row = 8 bytes

Big endian

23

Addresses and Pointers (pt 2)

Example cont.:

● Pointer stored at 0x48 points to the

data at 0x38
○ Pointer to a pointer!

● What data type is address 0x08?

○ We don’t know! It depends on how you

use it

○ Could be a pointer, long, etc.

64-bit (8-byte) word

One row = 8 bytes

Big endian

24

Pointer Operators

● & = “address of” operator

● * = “value at address” or “dereference” operator

○ Note: * is also used when declaring a pointer variable, this is NOT an operator in this

context

● Operator confusion

○ These are unary operators (i.e., they take 1 operand)

○ Both & and * are used as binary operators as well

■ x & y is bitwise AND (we’ll talk about this in the next couple lectures)

■ x * y is multiplication

25

Addresses and Pointers (pt 3)

Here’s some example C code that may

create the memory layout from before:

long x = 504;

long* p1 = &x;

long** p2 = &p1;

What is the value of *p2? What is its data

type?

64-bit (8-byte) word

One row = 8 bytes

Big endian

26

Summary

● Memory is a long, byte-addressed array

○ Word size bounds the size of the address and memory (address space)

○ Different data types use different number of bytes

○ Address of multi-byte piece of memory given by the lowest address

● Endianness determines memory storage order for multi-byte data

○ Least significant byte in lowest (little-endian) or highest (big-endian) address of

memory chunk

● Pointers are data objects that hold addresses

○ All pointers are the same length as the system’s word size

○ Type of pointer determines size of thing being pointed at

○ We use * (dereference) and & (address-of) operators to interact with pointers

27

	Slide 1: Memory, Data, & Addressing I
	Slide 2: Administrivia
	Slide 3: Hardware: Physical View
	Slide 4: Hardware: Logical View
	Slide 5: Hardware: 351 View
	Slide 6: Hardware: 351 View (pt 2)
	Slide 7: Hardware: 351 View (pt 2)
	Slide 8: Review Questions (pt 1)
	Slide 9: Review Questions (pt 2)
	Slide 10: Fixed-length Binary (Review)
	Slide 11: Bits and Bytes and Things (Review)
	Slide 12: Addresses in Memory (Review)
	Slide 13: Machine “Words” (Review)
	Slide 14: Discussion Question
	Slide 15: Address of Multibyte Data
	Slide 16: Byte Ordering (Review)
	Slide 17: Endianness
	Slide 18: Polling Question
	Slide 19: Endianness (pt 2)
	Slide 20: Data Representations in C
	Slide 21: Pointers in C (Review)
	Slide 22: A Picture of Memory (64-bit view)
	Slide 23: Addresses and Pointers
	Slide 24: Addresses and Pointers (pt 2)
	Slide 25: Pointer Operators
	Slide 26: Addresses and Pointers (pt 3)
	Slide 27: Summary

