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Announcements, Reminders

Whirlwind week recap & effects

= Lab 3 & Midterm grades by tonight
" [C21 & 22 inked slides coming soon

J/
0‘0

= Possible changes still forthcoming!

HW22 due tonight

= HW23 due Wednesday (22 May)
= HW 24/25 due Friday (24 May)

Lab 4 due tonight by 11:59 PM! Lab 5 due May 31*t
Memorial Day holiday next Monday (27 May)

J
0‘0

J/
0‘0

J/
0‘0

Final Exam: June 39 through June 5t, on Gradescope. More to come!

J/
0‘0
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Reading Review

+» Terminology:
= Address translation: page hit, page fault
" Translation Lookaside Buffer (TLB): TLB Hit, TLB Miss
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But first, some history... (1966)

= Systems Reference Library

IBM System/360 Model 67

Functional Characteristics

This publication contains detailed information on the organization,
characteristics, features, and functions unique to the IBM System/360
Model 67 Time Sharing System. Major areas described include
time-sharing philosophy, system structure, new units, generalized infor-
mation flow, standard and special features, instruction timings, and the
system control panel.

Descriptions of specific input/output devices used with the Model 67
appear in separate publications. See the /BM System/360 Bibliography,
Form GA22-6822 for a listing and a brief description of these publi-
cations.

The material in this publication is presented with the assumption
that the reader has knowledge of System/360 as defined in the IBM
System/360 Principles of Operation, Form GA22-6821 and the /BM
System/360 System Summary, Form GA22-6810. The IBM System/360
Model 67 Configurator, Form GA27-2713 also may be of interest to the
reader.
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But first, some history... (1966) 5o

command system.

Paging

Every program using the system is treated as a sequence of
4096-byte units called “pages”. By dividing programs into
pages, processor storage can be allocated in page
(4096-byte) increments. Program pages, therefore, can be
located randomly throughout core storage and swapped in
and out of processor storage, as pages are needed, commen-
surate with available space. Random location of pages for a
given program necessitates the construction of tables (page
tables) that reflect the processor storage location of the
pages. The swapping of pages between auxiliary storage and
processor storage is defined as “page turning”. If a page of
instructions refers to a program location not currently in
processor storage, the system stops operating the program
temporarily, makes arrangements to fetch the page from
auxiliary storage (the disk and drum storage space reserved
specifically for paging), and performs other operations in
the interim.

System Description 7

\ o..DS *
¥ Yo «~°\\\?{db

“Page turning” has the following advantages: /

1] The entire program need not be in core storage to:I

operate. Parts of many programs can be present, and
several may be ready for processing. Thus, the system
has many opportunities to do useful work while a page
is being swapped. ‘

2. Program “swap time” is reduced as an overhead factor
since only active pages of a program require movement
between core storage and auxiliary storage.

3. Although written and executed as a classical set of
contiguous instructions and working space, a program
can exist in the machine as scattered active pages.

The programmer’s concept of the program being executed
is of a “‘virtual storage” rather than of an actual processor
storage situation.

The user’s virtual storage is the contiguous address space
that would be needed to store the user’s program. This
virtual storage is not limited by actual processor storage size

but is limited only by the available auxiliary (disk and
drum) space. Theoretically, the programmer has 16 million
bytes (24-bit addressing) or up to 4 bi 'on bytes (optiona!
32-bit addressing) of virtual storage z
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Taking A Step Back: Address Translation Page Hit

CPU Chip @ PTEA
0 PTE /PPN

VA €
CPU > MMU i o Cache/

n bits wide
PA Memory

Data

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory; valid bit is one ‘,\e,'“"‘h
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data m"‘“‘k
W

5) Cache/memory sends data to processor

\
a“"és

w&"\'

[ VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry PA = Physical Address Data = Contents of memory stored at VA requested by CPU ]
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Taking a Step Back: Address Translation Page Fault

CPU Chip

CPU

VA

L25: Virtual Memory llI

Exception

MMU

Page fault handler

<€

PTE /PPN

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception & thus page fault handler

Cache/
Memory

u

Victim page
pag >

New page

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Disk
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Hmm... Translation Sounds Slow...

+» The MMU accesses memory&wiceﬂonce to get the PTE for translation,
and then again for the actual memory request
= The PTEs may be cached in L1 like any other memory word

- But they may be evicted by other data references

« And a hit in the L1 cache still requires 1-3 cycles

What can we do to make this faster?

. o
Solution: add another cache! &
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Speeding up Translation with a TLB

+ Translation Lookaside Buffer (TLB):

'[Stores page table entries for a small number of pagesJ
- Modern Intel processors have 128 or 256 entries in TLB

= Small hardware cache in MMU
- Split VPN into TLB Tag and TLB Index based on # of sets in TLB

o LMaps virtual page numbers to physical page numbers]
= Much faster than a page table lookup in cache/memory
®" How to compute TLB index? Split the VPN!

Set TLB

V|| TLBT PTE

> 0
Virtual Page Number | Page offset V] LTLBT PTE
V|| TLBT PTE

/ 1
v A 4 V|| TLBT PTE

TLBT TLBI
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Visual: TLB Hit

CPU Chip —_
QI PTE
VPN ve
o WV
CPU —> MMU >
4]

L25: Virtual Memory llI

VPN |- PTE

VPN |— PTE

VPN [— PTE

b e
o
o y"
5&0“’ o

Data

Cache/
Memory

+» A TLB hit eliminates a memory access!

CSE351, Spring 2024

10
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Visual: TLB Miss TLB

VPN |- PTE
VPN |— PTE
VPN [— PTE

CPU Chip g
(4
(2] PTE
VPN
2 9 0
PTEA
CPU —> MMU >Cache/
PA ] s| Memory
e
Data

< A TLB miss incurs an additional memory access (the PTE)

= Fortunately, TLB misses are rare 1
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Textual Equivalent: Fetching Data on a Memory Read

1) Address Translation (check TLB)
'Engut: VPN from Virtual Address (VA), Output: PPN for Physical Address (PA)]
= TLB Hit: Fetch translation, return PPN, DONE!

= TLB Miss: Check page table (in memory)
- Page Table Hit: Load page table entry into TLB, return PPN, DONE!

- Page Fault: Fetch page from disk to memory, update corresponding
page table entry, then load entry into TLB, then return PPN, DONE!

2) Now with PA... Fetch Data (check cache)
'[Ingut: Physical Address (PA), Output: data]

" Cache Hit: Return data value to processor, DONE!

= Cache Miss: Fetch data value from memory,
store it in cache, return it to processor, DONE!

12
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Flow Chart Equivalent: Address Translation

Virtual Address

CSE351, Spring 2024

4 \
NOTE: If the line looks

thicker, that means that
path takes longer time...

1 - Y,
. h""" (,'A7-”
TLB Lookup 1o ) Pd"““;OM
TLB Miss TLB Hit /
'
Check the Protection
Page Table > Check
Page not Page Access Access
in Mem in Mem Deniedl 1Permitted
Page Fault Update Protection Physical
(OS loads page) TLB Fault Address
Find in Disk Find iri Mem SIGSEGV Check cache

lMiss_l Hit
!

13
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Address Manipulation

Virtual Address (VA) —

Physical Address (PA) —

request from CPU:

split to access TLB:

(on TLB miss) access PT:

S —
—

m-bit physical address (PA):

split to access cache:

n-bit virtual address (VA)

!

TLB Index| Page Offset

!

Virtual Page Number Page offset

TRANSLATION

Physical Page Number Page offset

:

I

Cache Index

Block offset

14
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Context Switching Revisited

+» What needs to happen when the CPU switches processes?

= Registers:

- Save state of old process, load state of new process
« Including the Page Table Base Register (PTBR)

" Memory:
- Nothing to do! Pages for processes already exist in memory/disk and protected from each other

= TLB:

. & Invalidate all entries in TLB—mapping is for old process’ VAs! i
- Yep, have to start with a cold TLB (=) @)D.}-

= Cache:
- Can leave alone because storing based on PAs—good for shared data

15
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Summary of Address Translation Symbols

« Basic Parameters
= N =2" Number of addresses in virtual address space
= M = 2™ Number of addresses in physical address space
= P =2P Page size (bytes)

+» Components of the virtual address (VA)
= VPO Virtual page offset

= VPN Virtual page number
= TLBI TLB index
" TLBT TLB tag

+» Components of the physical address (PA)
= PPO Physical page offset (same as VPO)
" PPN Physical page number

16
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And now let’s put it all together...

17



CSE351, Spring 2024

L25: Virtual Memory llI

WA/ UNIVERSITY of WASHINGTON

Simple Memory System Example "

n

7
+ Addressing: 14-bit virtual addresses (n) & 12-bit physical address (m)
= Page size = 64 bytes (p)//\oz (69)=P=6 4

N
o D M
A
4 A\
13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA:
< VPN < VPO >
28 virtual Virtual Page Number Virtual Page Offset
(n—,o wids) m /f wide)
pages
N
' N
117 10 9 8 7 6 5 4 3 2 1 o0
PA:
2° physical < PPN = PPO >
pages Physical Page Number Physical Page Offset

(m-'p uip/e) (f//'// Pw,‘d@) 18
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Simple Memory System: Page Table

N . g n- -
+ Only showing first 16 entries (outof 7 ) Z /;, 7 =< 6
= Size of page table is 2P entries, remember! one for each
" Note: showing 2 hex digits for PPN even though only 6 bits Vistval ,076

®= Note: other management bits not shown, but part of PTE

VPN | PPN | Valid VPN | PPN | Valid
0 28 1 8 13 1
1 — 0 9 17 1
2 33 1 A 09 1
3 02 1 B — 0
4 - 0 C - 0
5 16 1 D 2D 1
6 - 0 E — 0
7 — 0 F oD 1

19
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ntries total 6] " fot - N
.. % /A Why does the TLB

o 4-Way set assoclative ignore the page offset?

It’s not its job to care!
) TLB tag > TLB index l/\ /

W‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
wy 2 VA
Wﬂ 4 ' 5 virtual page offset ——

Set

W N = O

virtual page number/

\ﬁayo

Way 1 Way 2 Way 3
Tag | PPN | Valid| Tag | PPN | Valid| Tag | PPN | Valid| Tag | PPN | Valid
03 - 0 09 | OD 1 00 - 0 07 02 1
03 2D 1 02 - 0 04 - 0 0A - 0
02 - 0 08 - 0 06 — 0 03 - 0
07 - 0 03 | OD 1 OA | 34 1 02 - 0

20
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Simple Memory System: Cache

+ Direct-mapped, with K=4B, C/K =16

+ Physically addressed

Index

N OO U A WN R

L25: Virtual Memory llI

6

5

4 3

2

1

»«—— cache index ——cache offset

0

I
<— physical page number —<«— physical page offset —

< cache tag
11 10 9 8 7
PA:
Tag | Valid | BO B1 B2 B3
19 1 99 11 23 11
15 0 — — — -
1B 1 00 02 04 08
36 0 — — — —
32 1 43 6D 8F 09
0D 1 36 72 FO 1D
31 0 — — — —
16 1 11 C2 DF 03

CSE351, Spring 2024

Note: Itis just

coincidence that the

PPN is the same width
as the cache Tag y

Index| Tag | Valid | BO B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 - - - -
A 2D 1 93 15 DA 3B
B 0B 0 - - - -
C 12 0 - - - -
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 - - - -

21
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Current State of Memory System o !
05"6 Page table (partial):

\
TLB: ) phisS- / \> VPN PPN| vV | VPN|PPN| Vv
Set |Tag | PPN| V |Tag | PPN| V |TagiPPN| V Tag|PPN| v “ 28 | 1 8 |13 ]1
0o [o3] - 10 o9|ODI1|o:o|:—io 071021 1 Hi -0y 911711
— — . — 0) 2 [33] 1] A o091
1 103,211 /02, — 10|04, — 1 O |OAI — 10O /
— i (R f f f ! A“ 3 02 1 B — 0
2 021 - 10 8 | 1 0 06|—|O|03|—|OI' a l - o c - To
3 i iOOAi34i1 OZi—iO 5 16 | 1 D | 2D 1@
0 JA 6 | - |0 E L=lOol 4
(v, (/
— H ﬂ"?mk 7 [— o] Fhoo 1] ¥
l p‘rosi"f) JPN
".'lss (Wuq 'vuq)
Vv | BO B1I B2 B3 Index| Tag | vVY| Bo B1 B2 B3
1 99 | 11 | 23 | 11 8 24 1 3A | 00 | 51 | 89
0 - - - - 9 2D 0 — — —
1 00 02 04 08 A 2D | 1 93 15 DA | 3B
0 - - - - B 0B 0 — — — —
1 43 | 6D | 8F | 09 C 12 0 - - - -
1 60l 72 | Fo | 1D D 16 1 04 | 96 | 34 | 15
0 - - - - E 13 1 83 | 77 | 18 | D3
1 11 | ¢2 | DF | 03 F 14 0 — — — —

22
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Note: Itis just
coincidence that the
PPN is the same width
as the cache Tag y

Memory Request Example #1

« Virtual Address: 0x03D4

< TLBT »<— TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

ojo|o|o|1|1|1]|1]|0]1|0|1]0]0
. VPN o VPO -

VPN QgF TeT xS TuBI Ox3 T8 Hit?_x Page Fault?ﬁ ppN 0D

+ Physical Address:

\ PPN > PPO

v

T k00 xS co el cacheHit? Y Data(byte) Ox Jb

24
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Note: Itisjust )

coincidence that the
PPN is the same width
as the cache Tag y

Memory Request Example #2 *

« Virtual Address: O0x038F

« TLBT >+— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1

o|o0o,0;0}1|11 000,11 1)1
« VPN e VPO

7
ven OxL Tt Ox3 el _Ox7 Tisvir N pagefauirr Y PPN 77

v

o §°
+ Physical Address: (o (7

CT > < Cl »+«—CO—> ar
11 10 9 8 7 6 5 4 3 2 1 0 (7

A

PPN - PPO -

A

CT Cl cO Cache Hit? _ Data (byte)

25



CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L25: Virtual Memory Il

Memory Request Example #3 .
+ Virtual Address: 0x0020

< TLBT »<— TLBl —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

olo/o|o|o|o0|loOo|O|1|0|0|O0O]|O]|oO
VPN > VPO -

von Ox0  1er 00 e OxD 1isHie N pagerauie N pen Ox 28

Note: Itis just
coincidence that the
PPN is the same width

as the cache Tag y

&

L)

D)

- Physical Address:

[lolllololo]l/]o|lo|0]|O
. PPN — PPO . C'lf]

CTM Cl —MX COM Cache Hit?ﬁ Data (byte) - .+ 777 Pd/”‘e//‘

26
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Note: Itis just

Memory Request Example #4 coincidence that the

PPN is the same width
as the cache Tag y

« Virtual Address: 0x036B

« TLBT >+— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1

o|o0o,0;0}1|1 01|10, 1;0,1]1
VPN e VPO

A

v

VPN | TLBT ) TLBI TLB Hit? )/  Page Fault? /' PPN

+» Physical Address:

CT > < Cl »«—CO—>
11 10 9 8 7 6 5 4 3 2 1 0

A

PPN - PPO

A
v

CT Cl cO Cache Hit? _/  Data (byte)

27
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Memory Overview (Data Flow)

+»mov]l 0x8043ab, %rdi Disk

requested 32-bits

: Page
Main memory . [,A
Jil
CPU J&I‘*”L Cache o Jﬁ;
(e be
& = /Hoh

- Cvicled
Line Data \ J
\ oc /
M M U i&"ﬁ k Block Pa‘)‘t w
TLB | '™ "igy

28
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Virtual Memory Summary

% Programmer’s view of virtual memory

= Each process has its own private linear address space
= Cannot be corrupted by other processes

+ System view of virtual memory

= Uses memory efficiently by caching virtual memory pages
- Efficient only because of locality

= Simplifies memory management and sharing

= Simplifies protection by providing permissions checking

29
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BONUS SLIDES

+ Multi-level Page Tables

30
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material

. This is extra
Page Table Reality (non-testable)

% Just one issue... the numbers don’t work out for the story so far!

+» The problem is the page table for each process:
= Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory
"= How many page table entries is that?

= About how long is each PTE?

" Moral: Cannot use this naive implementation of the virtual->physical page
mapping — it’s way too big

31
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This is extra
A Solution: Multi-level Page Tables (non-testable)
material
page table This is called a page walk
base register
(PTBR)
1 Virtual Address o1 0
VPN 1 VPN 2 VPN k VPO
Level 1 Level 2 Level k
page table page table page table
- > > - >
: » PPN |} —
TLB m-1 : p-ly O
PPN PPO
VPN |>| PTE
Physical Address
VPN |[>| PTE
VPN |[>| PTE

32
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This is extra

Multi-level Page Tables (non-testable)

)
0’0

)
0’0

)
0’0

)
0’0

material

A tree of depth k where each node at depth i has up to 27 children if part i of the
VPN has j bits

Hardware for multi-level page tables inherently more complicated
= Butit’s a necessary complexity — 1-level does not fit

Why it works: Most subtrees are not used at all, so they are never created and
definitely aren’t in physical memory

= Parts created can be evicted from cache/memory when not being used
= Each node can have a size of ~1-100KB

But now for a k-level page table, a TLB miss requires k + 1 cache/memory accesses
" Fine so long as TLB misses are rare — motivates larger TLBs

33



