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Announcements, Reminders
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v Elba (14 May): Given changing situation, follow any Ed 
announcements regarding updates to assignments and due dates!
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Fork Example

v Both processes continue/start execution after fork
§ Child starts at instruction after the call to fork (storing into pid)

v Can’t predict execution order of parent and child
v Both processes start with x = 1

§ Subsequent changes to x are independent

v Shared open files:  stdout is the same in both parent and child
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void fork1() {
    int x = 1;
    pid_t fork_ret = fork();
    if (fork_ret == 0)
 printf("Child has x = %d\n", ++x);
    else
 printf("Parent has x = %d\n", --x);
    printf("Bye from process %d with x = %d\n", getpid(), x);
}
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Modeling fork with Process Graphs

v A process graph is a useful tool for capturing the partial ordering of statements in 
a concurrent program
§ Each vertex is the execution of a statement
§ a → b means a happens before b
§ Edges can be labeled with current value of variables
§ printf vertices can be labeled with output
§ Each graph begins with a vertex with no in-edges 

v Any topological sort of the graph corresponds to a feasible total ordering
§ Total ordering of vertices where all edges point from left to right
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Fork Example:  Possible Output
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void fork1() {
    int x = 1;
    pid_t fork_ret = fork();
    if (fork_ret == 0)
 printf("Child has x = %d\n", ++x);
    else
 printf("Parent has x = %d\n", --x);
    printf("Bye from process %d with x = %d\n", getpid(), x);
}

printf--x printffork

Child

Bye

x=1

printf printf++x

Bye

Parent

x=2

x=0
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Polling Question

v Are the following sequences of outputs possible?
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void nestedfork() {
printf("L0\n");

    if (fork() == 0) {
printf("L1\n");

        if (fork() == 0) {
printf("L2\n");

}
}

    printf("Bye\n");
}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A.  No No
B.  No Yes
C.  Yes No
D.  Yes Yes
E.  We’re lost…
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Reading Review

v Terminology:
§ exec*(), exit(), wait(), waitpid()
§ init/systemd, reaping, zombie processes
§ Virtual memory:  virtual vs. physical addresses and address space, swap space

7



CSE351, Spring 2024L23:  Processes II, Virtual Memory I

Fork-Exec

v fork-exec model:
§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address space with the code for 

a different program
• Whole family of exec calls – see exec(3) and execve(2)
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// Example arguments: path="/usr/bin/ls",
//     argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char *path, char *argv[]) {
   pid_t fork_ret = fork();
   if (fork_ret != 0) {
      printf("Parent: created a child %d\n", fork_ret);
   } else {
      printf("Child: about to exec a new program\n");
      execv(path, argv);
   }
   printf("This line printed by parent only!\n");
}

Note:  the return values of fork and 
exec* should be checked for errors
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Exec-ing a new program
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Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork()

exec*()

Very high-level diagram of what 
happens when you run the 
command “ls” in a Linux shell:
v This is the loading part of CALL!

parent child child
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Processes

v Processes and context switching
v Creating new processes

§ fork() and exec*()

v Ending a process
§ exit(), wait(), waitpid()
§ Zombies
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exit:  Ending a process

v void exit(int status)
§ Explicitly exits a process

• Status code:  0 is used for a normal exit, nonzero for abnormal exit

v The return statement from main() also ends a process in C
§ The return value is the status code
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Zombies

v A terminated process still consumes system resources
§ Various tables maintained by OS
§ Called a “zombie” (a living corpse, half alive and half dead)

v Reaping is performed by parent on terminated child
§ Parent is given exit status information and kernel then deletes zombie child 

process
§ In long-running processes (e.g., shells, servers) we need explicit reaping

v If parent terminates without reaping a child, then the orphaned child will 
be reaped by init process (pid 1)
§ Note: on recent Linux systems, init has been renamed systemd
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wait:  Synchronizing with Children

v int wait(int* child_status)
§ Suspends current process (i.e., the parent) until one of its children terminates
§ Return value is the PID of the child process that terminated

• On successful return, the child process is reaped

§ If child_status != NULL, then the *child_status value indicates why the 
child process terminated
• if NULL, that means the status was ignored
• Special macros for interpreting this status – see  man wait(2)

v Note:  If parent process has multiple children, wait will return when any 
of the children terminates
§ waitpid can be used to wait on a specific child process
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wait:  Synchronizing with Children
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void fork_wait() {
   int child_status;

   if (fork() == 0) {
      printf("HC: hello from child\n");
      exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
   printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC
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linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
  PID TTY          TIME CMD
 6585 ttyp9    00:00:00 tcsh
 6639 ttyp9    00:00:03 forks
 6640 ttyp9    00:00:00 forks <defunct>
 6641 ttyp9    00:00:00 ps
linux> kill 6639
[1]    Terminated
linux> ps
  PID TTY          TIME CMD
 6585 ttyp9    00:00:00 tcsh
 6642 ttyp9    00:00:00 ps

Example:  Zombie

v ps shows child process as “defunct”

v Killing parent allows child to be reaped 
by init
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void fork7() {
   if (fork() == 0) {
      /* Child */
      printf("Terminating Child, PID = %d\n",
             getpid());
      exit(0);
   } else {
      printf("Running Parent, PID = %d\n",
             getpid());
      while (1); /* Infinite loop */
   }
}

forks.c
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linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
  PID TTY          TIME CMD
 6585 ttyp9    00:00:00 tcsh
 6676 ttyp9    00:00:06 forks
 6677 ttyp9    00:00:00 ps
linux> kill 6676
linux> ps
  PID TTY          TIME CMD
 6585 ttyp9    00:00:00 tcsh
 6678 ttyp9    00:00:00 ps

Example:

v Child process still active even though parent 
has terminated

v Must kill explicitly, or else will keep running 
indefinitely
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void fork8() {
   if (fork() == 0) {
      /* Child */
      printf("Running Child, PID = %d\n",
             getpid());
      while (1); /* Infinite loop */
   } else {
      printf("Terminating Parent, PID = %d\n",
             getpid());
      exit(0);
   }
} forks.c

Non-terminating
Child
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Process Management Summary
v fork makes two copies of the same process  (parent & child)

§ Returns different values to the two processes

v exec* replaces current process from file (new program)
§ Two-process program:

• First fork()
• if (pid == 0) { /* child code */ } else { /* parent code */ }

§ Two different programs:
• First fork()
• if (pid == 0) { execv(…) } else { /* parent code */ }

v exit or return from main to end a process
v wait or waitpid used to synchronize parent/child execution and to reap child 

process
17
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v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory, 

Memory Allocation

v How do we maintain logical consistency in the face of more data and 
more processes?
§ How do we support control flow both within many processes and things external to 

the computer?
§ How do we support data access, including dynamic requests, across multiple 

processes?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

18

⋮
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Virtual Memory (VM*)

v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

19
*Not to be confused with “Virtual Machine” which is a whole other thing.

Warning:  Virtual memory is pretty complex, 
but crucial for understanding how processes 

work and for debugging performance
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Memory as we know it so far… is virtual!
v Programs refer to virtual memory addresses

§ movq (%rdi),%rax

§ Conceptually memory is just a very large array of bytes
§ System provides private address space to each process

v Allocation:  Compiler and run-time system
§ Where different program objects should be stored
§ All allocation within single virtual address space

v But…
§ We probably don’t have 2w bytes of physical memory 
§ We certainly don’t have 2w bytes of physical memory

for every process
§ Processes should not interfere with one another

• Except in certain cases where they want to share code or data
20

0xFF······F

0x00······0
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Problem 1:  How Does Everything Fit?
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64-bit virtual addresses can address several exabytes
(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes

(e.g., 8,589,934,592 bytes)

?

1 virtual address space per process, with many processes…

(Not to scale; physical memory would be smaller 
than the period at the end of this sentence compared 
to the virtual address space.)
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Problem 2:  Memory Management
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Physical main memory

What goes where?

stack
heap

.text

.data
…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…
We have multiple 
processes:
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Problem 3:  How To Protect
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Physical main memory

Process i

Process j

Problem 4:  How To Share?
Physical main memory

Process i

Process j
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How can we solve these problems?
v “Any problem in computer science can be solved by adding another level of 

indirection.” – David Wheeler, inventor of the subroutine

v Without Indirection

v With Indirection

24

What if I want to move Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing
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Indirection
v Indirection:  The ability to reference something using a name, reference, or container 

instead of the value itself. A flexible mapping between a name and a thing allows 
changing the thing without notifying holders of the name.
§ Adds some work (now have to look up 2 things instead of 1)
§ But don’t have to track all uses of name/address (single source!)

v Examples:
§ Phone system:  cell phone number portability
§ Domain Name Service (DNS):  translation from name to IP address
§ Call centers:  route calls to available operators, etc.
§ Dynamic Host Configuration Protocol (DHCP):  local network address assignment

25
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Indirection in Virtual Memory
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v Each process gets its own private virtual address space
v Solves the previous problems!

Physical memory

Virtual memory

Virtual memory

Process 1

Process 𝑛

mapping
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Mapping
v A virtual address (VA) can be mapped to either physical memory or disk

§ Unused VAs may not have a mapping
§ VAs from different processes may map to same location in memory/disk

27

Process 2’s Virtual 
Address Space

Physical 
Memory

Disk

Process 1’s Virtual 
Address Space

“Swap Space”



CSE351, Spring 2024L23:  Processes II, Virtual Memory I

Address Spaces

v Virtual address space:  Set of N = 2$ virtual addr
§ {0, 1, 2, 3, …, N-1}

v Physical address space:  Set of M = 2𝑚 physical addr
§ {0, 1, 2, 3, …, M-1}

v Every byte in main memory has:
§ one physical address (PA)
§ zero, one, or more virtual addresses (VAs)

28
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Polling Questions

v On a 64-bit machine currently running 8 processes, how much virtual 
memory is there?

v True or False:  A 32-bit machine with 8 GiB of RAM installed would never 
use all of it (in theory).

29
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Summary

v Virtual memory provides:
§ Ability to use limited memory (RAM) across multiple processes
§ Illusion of contiguous virtual address space for each process
§ Protection and sharing amongst processes

30
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Detailed examples:
v Consecutive forks
v wait() example
v waitpid() example

31
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Example:  Two consecutive forks
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void fork2() {
printf("L0\n");
fork();
printf("L1\n");
fork();

   printf("Bye\n");
}

printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye
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Example:  Three consecutive forks

v Both parent and child can continue forking
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void fork3() {
    printf("L0\n");
    fork();
    printf("L1\n");    
    fork();
    printf("L2\n");    
    fork();
    printf("Bye\n");
} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0



CSE351, Spring 2024L23:  Processes II, Virtual Memory I

wait() Example

v If multiple children completed, will take in arbitrary order
v Can use macros WIFEXITED and WEXITSTATUS to get information about exit status
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void fork10() {
   pid_t pid[N];
   int i;
   int child_status;
   for (i = 0; i < N; i++)
      if ((pid[i] = fork()) == 0)
         exit(100+i); /* Child */
   for (i = 0; i < N; i++) {
      pid_t wpid = wait(&child_status);
      if (WIFEXITED(child_status))
         printf("Child %d terminated with exit status %d\n",
                wpid, WEXITSTATUS(child_status));
      else
         printf("Child %d terminated abnormally\n", wpid);
   }
}
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waitpid():  Waiting for a Specific Process

pid_t waitpid(pid_t pid,int &status,int options)
§ suspends current process until specific process terminates
§ various options (that we won’t talk about)
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void fork11() {
   pid_t pid[N];
   int i;
   int child_status;
   for (i = 0; i < N; i++)
      if ((pid[i] = fork()) == 0)
         exit(100+i); /* Child */
   for (i = 0; i < N; i++) {
      pid_t wpid = waitpid(pid[i], &child_status, 0);
      if (WIFEXITED(child_status))
         printf("Child %d terminated with exit status %d\n",
                wpid, WEXITSTATUS(child_status));
      else
         printf("Child %d terminated abnormally\n", wpid);
   }
}


