
CSE351, Spring 2024L23: Processes II, Virtual Memory I

Processes II & Virtual Memory I
CSE 351 Spring 2024

Instructor:
Elba Garza
Kelly Shaw
Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Announcements, Reminders

2

v Elba (14 May): Given changing situation, follow any Ed
announcements regarding updates to assignments and due dates!

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Fork Example

v Both processes continue/start execution after fork
§ Child starts at instruction after the call to fork (storing into pid)

v Can’t predict execution order of parent and child
v Both processes start with x = 1

§ Subsequent changes to x are independent

v Shared open files: stdout is the same in both parent and child
3

void fork1() {
 int x = 1;
 pid_t fork_ret = fork();
 if (fork_ret == 0)
 printf("Child has x = %d\n", ++x);
 else
 printf("Parent has x = %d\n", --x);
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Modeling fork with Process Graphs

v A process graph is a useful tool for capturing the partial ordering of statements in
a concurrent program
§ Each vertex is the execution of a statement
§ a → b means a happens before b
§ Edges can be labeled with current value of variables
§ printf vertices can be labeled with output
§ Each graph begins with a vertex with no in-edges

v Any topological sort of the graph corresponds to a feasible total ordering
§ Total ordering of vertices where all edges point from left to right

4

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Fork Example: Possible Output

5

void fork1() {
 int x = 1;
 pid_t fork_ret = fork();
 if (fork_ret == 0)
 printf("Child has x = %d\n", ++x);
 else
 printf("Parent has x = %d\n", --x);
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

printf--x printffork

Child

Bye

x=1

printf printf++x

Bye

Parent

x=2

x=0

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Polling Question

v Are the following sequences of outputs possible?

6

void nestedfork() {
printf("L0\n");

 if (fork() == 0) {
printf("L1\n");

 if (fork() == 0) {
printf("L2\n");

}
}

 printf("Bye\n");
}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Reading Review

v Terminology:
§ exec*(), exit(), wait(), waitpid()
§ init/systemd, reaping, zombie processes
§ Virtual memory: virtual vs. physical addresses and address space, swap space

7

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Fork-Exec

v fork-exec model:
§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address space with the code for

a different program
• Whole family of exec calls – see exec(3) and execve(2)

8

// Example arguments: path="/usr/bin/ls",
// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char *path, char *argv[]) {
 pid_t fork_ret = fork();
 if (fork_ret != 0) {
 printf("Parent: created a child %d\n", fork_ret);
 } else {
 printf("Child: about to exec a new program\n");
 execv(path, argv);
 }
 printf("This line printed by parent only!\n");
}

Note: the return values of fork and
exec* should be checked for errors

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Exec-ing a new program

9

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork()

exec*()

Very high-level diagram of what
happens when you run the
command “ls” in a Linux shell:
v This is the loading part of CALL!

parent child child

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Processes

v Processes and context switching
v Creating new processes

§ fork() and exec*()

v Ending a process
§ exit(), wait(), waitpid()
§ Zombies

10

CSE351, Spring 2024L23: Processes II, Virtual Memory I

exit: Ending a process

v void exit(int status)
§ Explicitly exits a process

• Status code: 0 is used for a normal exit, nonzero for abnormal exit

v The return statement from main() also ends a process in C
§ The return value is the status code

11

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Zombies

v A terminated process still consumes system resources
§ Various tables maintained by OS
§ Called a “zombie” (a living corpse, half alive and half dead)

v Reaping is performed by parent on terminated child
§ Parent is given exit status information and kernel then deletes zombie child

process
§ In long-running processes (e.g., shells, servers) we need explicit reaping

v If parent terminates without reaping a child, then the orphaned child will
be reaped by init process (pid 1)
§ Note: on recent Linux systems, init has been renamed systemd

12

CSE351, Spring 2024L23: Processes II, Virtual Memory I

wait: Synchronizing with Children

v int wait(int* child_status)
§ Suspends current process (i.e., the parent) until one of its children terminates
§ Return value is the PID of the child process that terminated

• On successful return, the child process is reaped

§ If child_status != NULL, then the *child_status value indicates why the
child process terminated
• if NULL, that means the status was ignored
• Special macros for interpreting this status – see man wait(2)

v Note: If parent process has multiple children, wait will return when any
of the children terminates
§ waitpid can be used to wait on a specific child process

13

CSE351, Spring 2024L23: Processes II, Virtual Memory I

wait: Synchronizing with Children

14

void fork_wait() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

CSE351, Spring 2024L23: Processes II, Virtual Memory I

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Example: Zombie

v ps shows child process as “defunct”

v Killing parent allows child to be reaped
by init

15

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1); /* Infinite loop */
 }
}

forks.c

CSE351, Spring 2024L23: Processes II, Virtual Memory I

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Example:

v Child process still active even though parent
has terminated

v Must kill explicitly, or else will keep running
indefinitely

16

void fork8() {
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1); /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

Non-terminating
Child

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Process Management Summary
v fork makes two copies of the same process (parent & child)

§ Returns different values to the two processes

v exec* replaces current process from file (new program)
§ Two-process program:

• First fork()
• if (pid == 0) { /* child code */ } else { /* parent code */ }

§ Two different programs:
• First fork()
• if (pid == 0) { execv(…) } else { /* parent code */ }

v exit or return from main to end a process
v wait or waitpid used to synchronize parent/child execution and to reap child

process
17

CSE351, Spring 2024L23: Processes II, Virtual Memory I

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory,

Memory Allocation

v How do we maintain logical consistency in the face of more data and
more processes?
§ How do we support control flow both within many processes and things external to

the computer?
§ How do we support data access, including dynamic requests, across multiple

processes?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

18

⋮

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Virtual Memory (VM*)

v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

19
*Not to be confused with “Virtual Machine” which is a whole other thing.

Warning: Virtual memory is pretty complex,
but crucial for understanding how processes

work and for debugging performance

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Memory as we know it so far… is virtual!
v Programs refer to virtual memory addresses

§ movq (%rdi),%rax

§ Conceptually memory is just a very large array of bytes
§ System provides private address space to each process

v Allocation: Compiler and run-time system
§ Where different program objects should be stored
§ All allocation within single virtual address space

v But…
§ We probably don’t have 2w bytes of physical memory
§ We certainly don’t have 2w bytes of physical memory

for every process
§ Processes should not interfere with one another

• Except in certain cases where they want to share code or data
20

0xFF······F

0x00······0

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Problem 1: How Does Everything Fit?

21

64-bit virtual addresses can address several exabytes
(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes

(e.g., 8,589,934,592 bytes)

?

1 virtual address space per process, with many processes…

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Problem 2: Memory Management

22

Physical main memory

What goes where?

stack
heap

.text

.data
…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…
We have multiple
processes:

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Problem 3: How To Protect

23

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

CSE351, Spring 2024L23: Processes II, Virtual Memory I

How can we solve these problems?
v “Any problem in computer science can be solved by adding another level of

indirection.” – David Wheeler, inventor of the subroutine

v Without Indirection

v With Indirection

24

What if I want to move Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Indirection
v Indirection: The ability to reference something using a name, reference, or container

instead of the value itself. A flexible mapping between a name and a thing allows
changing the thing without notifying holders of the name.
§ Adds some work (now have to look up 2 things instead of 1)
§ But don’t have to track all uses of name/address (single source!)

v Examples:
§ Phone system: cell phone number portability
§ Domain Name Service (DNS): translation from name to IP address
§ Call centers: route calls to available operators, etc.
§ Dynamic Host Configuration Protocol (DHCP): local network address assignment

25

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Indirection in Virtual Memory

26

v Each process gets its own private virtual address space
v Solves the previous problems!

Physical memory

Virtual memory

Virtual memory

Process 1

Process 𝑛

mapping

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Mapping
v A virtual address (VA) can be mapped to either physical memory or disk

§ Unused VAs may not have a mapping
§ VAs from different processes may map to same location in memory/disk

27

Process 2’s Virtual
Address Space

Physical
Memory

Disk

Process 1’s Virtual
Address Space

“Swap Space”

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Address Spaces

v Virtual address space: Set of N = 2$ virtual addr
§ {0, 1, 2, 3, …, N-1}

v Physical address space: Set of M = 2𝑚 physical addr
§ {0, 1, 2, 3, …, M-1}

v Every byte in main memory has:
§ one physical address (PA)
§ zero, one, or more virtual addresses (VAs)

28

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Polling Questions

v On a 64-bit machine currently running 8 processes, how much virtual
memory is there?

v True or False: A 32-bit machine with 8 GiB of RAM installed would never
use all of it (in theory).

29

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Summary

v Virtual memory provides:
§ Ability to use limited memory (RAM) across multiple processes
§ Illusion of contiguous virtual address space for each process
§ Protection and sharing amongst processes

30

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Detailed examples:
v Consecutive forks
v wait() example
v waitpid() example

31

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Example: Two consecutive forks

32

void fork2() {
printf("L0\n");
fork();
printf("L1\n");
fork();

 printf("Bye\n");
}

printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

CSE351, Spring 2024L23: Processes II, Virtual Memory I

Example: Three consecutive forks

v Both parent and child can continue forking

33

void fork3() {
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

CSE351, Spring 2024L23: Processes II, Virtual Memory I

wait() Example

v If multiple children completed, will take in arbitrary order
v Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

34

void fork10() {
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

CSE351, Spring 2024L23: Processes II, Virtual Memory I

waitpid(): Waiting for a Specific Process

pid_t waitpid(pid_t pid,int &status,int options)
§ suspends current process until specific process terminates
§ various options (that we won’t talk about)

35

void fork11() {
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

