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Announcements, Reminders

v HW19 due tonight! 
§ HW20 due Wednesday (15 May)
§ HW21 due Friday (17 May)
§ HW22 due Monday (20 May)

v Lab 4 due Friday
§ Use any late days le: on Lab 4! 

v Lab 5 releasing Friday!
v Guest lectures by Prof. Kelly Shaw on Wednesday & Friday 😎
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Midterm Grades: A Reminder

Your success in life is not defined by grades.
You are not defined by grades.

v We know all of this seems critically important right now, but we promise, 
the numbers on a transcript will fade with time. I (Elba) personally got 
both the highest and lowest midterm grades in my classes at some point 
in my college career.

v We’ll release grades later this week!
§ Regrade requests will be open for a week – please let us know if anything looks 

amiss!
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v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory, 

Memory Allocation
 

So far we’ve been viewing concepts from
 the perspective of a single program…
 

v How do we maintain logical consistency in the face of more data and 
more processes?
§ How do we support control flow both within many processes and things external to 

the computer?
§ How do we support data access, including dynamic requests, across multiple 

processes? (Hint: Virtual memory next time!)

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface
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Reading Review

v Terminology:
§ Exceptional control flow, event handlers
§ Operating system kernel
§ Exceptions:  interrupts, traps, faults, aborts
§ Processes:  concurrency, context switching, fork-exec model, process ID
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Leading Up to Processes

v System Control Flow
§ Control flow
§ Excep1onal control flow
§ Asynchronous excepXons (interrupts)
§ Synchronous excepXons (traps & faults)
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Control Flow

v So far: we’ve seen how the flow of control changes as a single program 
executes, mainly within the program. 

v Reality: multiple programs running concurrently
§ How does control flow across the many components of the system?
§ In particular: We usually have more programs running than CPUs…

v Exceptional control flow is basic mechanism used for:
§ Transferring control between processes and OS
§ Handling I/O and virtual memory within the OS
§ Implementing multi-process apps like shells and web servers
§ Implementing concurrency
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Control Flow

v Processors do only one thing:
§ From startup to shutdown, a CPU simply reads and executes (interprets) a 

sequence of instrucXons, one at a Xme
§ This sequence is the CPU’s control flow
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<startup>
instr1
instr2
instr3
…
instrn
<shutdown>

Physical control flow

time
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Altering the Control Flow
v Up to now, two ways to change control flow:

§ Jumps (condiFonal and uncondiFonal)
§ Call and return
§ Both react to changes in program state

v Processor also needs to react to changes in system state:
§ Unix/Linux user hits “Ctrl-C” at the keyboard
§ User clicks on a different applicaFon’s window on the screen
§ Data arrives from a disk or a network adapter
§ InstrucFon divides by zero
§ System Fmer expires (important later!)

v Can jumps and procedure calls achieve this?
§ No – the system needs mechanisms for “excep&onal” control flow!
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Exceptional Control Flow

Exists at all levels of a computer system:

v Low level mechanisms
§ Exceptions 

• Change in processor’s control flow in response to a system event 
(i.e., change in system state, user-generated interrupt)

• Implemented using a combination of hardware and OS software 

v Higher level mechanisms
§ Process context switch

• Implemented by OS software and hardware timer

§ Signals
• Implemented by OS software 🚨🚨
• We won’t cover these in detail—see CSE 451 and EE/CSE 474

10

🚨 🚨



CSE 351, Spring 2024L22:  System Control Flow & Processes

Exceptions (Review)

v An exception is transfer of control to the operating system (OS) kernel in response to 
some event  (i.e., change in processor state)

§ Kernel is the operating system code that lives in memory, very VIP
§ Examples:  division by 0, page fault, I/O request completes, Ctrl-C

v How does the system know where to jump to in the OS?
11

User Code OS Kernel Code

excep'on
exception processing by 
exception handler, then:
• return to current_instr, or
• return to next_instr, or
• abort

current_instr
next_instr

event 
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Exception Table
v A jump table for excepXons (also called Interrupt Vector Table)

§ Each type of event has a unique 
excepFon number 𝑘

§ 𝑘 = index into excepFon table
(a.k.a. interrupt vector)

§ Handler 𝑘 is called each Fme
excepFon 𝑘 occurs
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0
1
2 ...

n-1

Exception
Table

code for  
excep@on handler 0

code for 
exception handler 1

code for
exception handler 2

code for 
exception handler n-1

...

Exception 
numbers

This is extra 
(non-testable) 

material
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Exception Table (Excerpt)
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Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS-defined Interrupt or trap

This is extra 
(non-testable) 

material
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Leading Up to Processes

v System Control Flow
§ Control flow
§ Exceptional control flow
§ Asynchronous exceptions (interrupts)
§ Synchronous exceptions (traps & faults)
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Asynchronous Exceptions (Review)
v Interrupts: caused by events external to the processor:

§ Indicated by setting the processor’s interrupt pin(s) (wire into CPU)
§ After interrupt handler runs, the handler returns to “next” instruction

v Examples:
§ I/O interrupts

• Hitting Ctrl-C on the keyboard
• Clicking a mouse button or tapping a touchscreen
• Arrival of a packet from a network
• Arrival of data from a disk

§ Timer interrupt
• Every few milliseconds, an external timer chip triggers an interrupt
• Used by the OS kernel to take back control from user programs
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Synchronous Exceptions (Review)
v Caused by events that occur as a result of execuXng an instrucXon:

§ Traps (why is it called this?)

• Inten9onal: transfer control to OS to perform some funcFon
• Examples:  system calls, breakpoint traps, special instrucFons
• Returns control to “next” instrucFon, because we wanted it to happen ❤

§ Faults
• Uninten9onal but possibly recoverable 
• Examples:  page faults, segment protecFon faults, integer divide-by-zero excepFons
• Either re-executes faulFng (“current”) instrucFon or aborts

§ Aborts
• Uninten9onal and unrecoverable
• Examples:  parity error, machine check (hardware failure detected 🥴)
• Aborts the current program
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System Calls

v Each system call has a unique ID number
v Examples for Linux on x86-64:
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Number    Name Description
0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to process

These are 
not the same 
as exception 

numbers!

Files

Processes
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Traps Example: Opening File
v User calls  open(filename, options)
v Calls __open function, which invokes system call instruction syscall
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00000000000e5d70 <__open>:
...
e5d79:   b8 02 00 00 00      mov $0x2,%eax  # open is syscall 2
e5d7e:   0f 05               syscall         # return value in %rax
e5d80:   48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax 
...
e5dfa:   c3                  retq

User code OS Kernel code

Exception

Open file
Returns

syscall
cmp

¢ %(r|e)ax contains syscall number (weird…)
¢ Other arguments in %rdi, %rsi, %rdx, %r10, 

%r8, %r9
¢ Return value in %rax
¢ Negative value is an error corresponding to 

negative errno
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v User writes to memory location
v That portion (page) of user’s memory is currently on disk and not in memory

v Page fault handler must load page into physical memory
v Returns to faulting instruction:  mov is executed again!

§ Successful on second try

Fault Example: Page Fault
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int a[1000];
int main () {
  a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl   $0xd,0x8049d10

User code OS Kernel code

exception: page fault
Create page and 
load into memory
(nothing more!)

returns

movl
handle_page_fault:
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Abort Example: Invalid Memory Reference

v Page fault handler detects invalid address
v Sends SIGSEGV signal to user process
v User process exits with “segmentation fault”

20

int a[1000];
int main() {
  a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl   $0xd,0x804e360

User Process

exception: page fault

detect invalid address
movl

signal process

handle_page_fault:

OS Kernel code
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Processes

v Processes and context switching
v Creating new processes

§ fork(), exec*(), and wait()

v Zombies
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Process 1

What is a process? (Review)

CPU

Registers %rip

Memory

Stack

Heap

Code

Data

Disk

Chrome.exe

It’s an illusion, though!
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What is a process? (Review)

v A process is an instance of a running program
§ One of the most profound ideas in computer science

v Another abstraction in our computer 
§ Provided by the OS
§ OS uses a data structure to represent 

each process (contains process ID (PID), etc.)
§ Maintains the interface between the program and the 

underlying hardware (CPU + memory)

v What is the difference between:
§ A processor? A program? A process?
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Processes (Review)

v A process is an instance of a running program
§ One of the most profound ideas in computer science

v Process provides each program with two key abstractions:
§ Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

§ Private address space
• Each program seems to have exclusive use of main memory
• Provided by kernel mechanism called virtual memory

v What do processes have to do with exceptional control flow?
§ Exceptional control flow is the mechanism the OS uses to 

enable multiple processes to run on the same system
24
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What is a process?
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Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 2

Process 3

Process 4Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

It’s an illusion!
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What is a process?
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Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

Process 2

“Memory”
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Heap
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“CPU”
Registers

Process 3

“Memory”
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Heap
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Data
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Registers

Process 4

“Memory”
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Heap
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Data

“CPU”
Registers

Operating
System

It’s an illusion!
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Multiprocessing:  The Illusion 🔮

v Computer runs many processes simultaneously
§ Applications for one or more users

• Web browsers, email clients, editors, …

§ Background tasks
• Monitoring network & I/O devices
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MulNprocessing:  The Reality

v Single processor executes multiple processes concurrently
§ Process executions interleaved, CPU runs one at a time
§ Address spaces managed by virtual memory system (we’ll get to it!)
§ Execution context (register values, stack, …) for other processes saved in memory
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Memory
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Memory

Stack
Heap

Code
Data

Saved 
registers

Multiprocessing (Review)

v Context switch
1) Save current registers in memory
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Memory

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…

v Context switch
1) Save current registers in memory
2) Schedule next process for execution
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Memory

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…

Multiprocessing (Review)
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CPU
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Stack
Heap

Code
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Heap

Code
Data

Saved 
registers

v Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space
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Memory

Stack
Heap

Code
Data

Saved 
registers

Stack
Heap

Code
Data

Saved 
registers

…

Multiprocessing:  The (Modern) Reality

v Multicore processors
§ Multiple CPUs (“cores”) on single chip
§ Share main memory (and some of the caches)
§ Each can execute a separate process

• Kernel schedules processes to cores
• Still constantly swapping processes
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Concurrent Processes

v Each process is a logical control flow 
v Two processes run concurrently (are concurrent) if their instruction 

executions/flows overlap in time
§ Otherwise, they are sequential

v Example:  (running on single core)
§ Concurrent:  A & B, A & C
§ Sequential:  B & C 
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Process A Process B Process C

time

Assume only one CPU core



CSE 351, Spring 2024L22:  System Control Flow & Processes

User’s View of Concurrency

v Control flows for concurrent processes are physically
disjoint in time
§ CPU only executes instructions for one process at a time

v However, the user can think of concurrent processes as executing at the 
same time, in parallel
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Process A Process B Process C

tim
e

Process A Process B Process CUser View

Assume only one CPU core
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v Processes are managed by a shared chunk of OS code called the kernel
§ The kernel is not a separate process, but rather runs as part of a user process

v In x86-64 Linux:
§ Same address in each process 

refers to same shared 
memory location*

Context Switching

35

* sort of, the story here became 
more complicated after 
Meltdown and Spectre…

Assume only one CPU core
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Context Switching (Review)

v Processes are managed by a shared chunk of OS code called the kernel
§ The kernel is not a separate process, but rather runs as part of a user process

v Context switch passes control flow from one process to another and is 
performed using kernel code
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Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

Excep'on

Assume only one CPU core
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Processes & Context Switching Summary

v Exceptions
§ Events that require non-standard control flow
§ Generated asynchronously (interrupts) or synchronously (traps and faults)
§ After an exception is handled, either:

• Re-execute the current instruction
• Resume execution with the next instruction
• Abort the process that caused the exception

v Processes
§ Only one of many active processes executes at a time on a CPU, but each appears 

to have total control of the processor
§ OS periodically “context switches” between active processes
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Processes

v Processes and context switching
v CreaFng new processes

§ fork() and exec*()

v Ending a process
§ exit(), wait(), waitpid()
§ Zombies
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Process 2

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs
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Creating New Processes & Programs

v fork-exec model (Linux):
§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address space with the code for 

a different program
• Family:  execv, execl, execve, execle, execvp, execlp

§ fork() and execve() are system calls

v Other system calls for process management:
§ getpid()
§ exit()

§ wait(), waitpid()
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fork: Creating New Processes

v pid_t fork(void)
§ Creates a new “child” process that is identical to the calling “parent” process, including all state 

(memory, registers, etc.)
§ Returns 0 to the child process
§ Returns child’s process ID (PID) to the parent process

v Child is almost identical to parent:
§ Child gets an identical 

(but separate) copy of the 
parent’s virtual address 
space

§ Child has a different PID 
than the parent

v fork is unique (and often confusing) because 
it is called once but returns “twice”
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pid_t pid = fork();
if (pid == 0) {
   printf("hello from child\n");
} else { 
   printf("hello from parent\n");
}
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Summary

v Exceptions
§ Events that require non-standard control flow
§ Generated asynchronously (interrupts) or synchronously (traps and faults)
§ After an exception is handled, either:

• Re-execute the current instruction
• Resume execution with the next instruction
• Abort the process that caused the exception

v Processes
§ Only one of many active processes executes at a time on a CPU, but each appears 

to have total control of the processor
§ OS periodically “context switches” between active processes
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