
CSE 351, Spring 2024L22: System Control Flow & Processes

System Control Flow & Processes
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L22: System Control Flow & Processes

Announcements, Reminders

v HW19 due tonight!
§ HW20 due Wednesday (15 May)
§ HW21 due Friday (17 May)
§ HW22 due Monday (20 May)

v Lab 4 due Friday
§ Use any late days le: on Lab 4!

v Lab 5 releasing Friday!
v Guest lectures by Prof. Kelly Shaw on Wednesday & Friday 😎

2

https://csci.williams.edu/people/faculty/kelly-shaw/

CSE 351, Spring 2024L22: System Control Flow & Processes

Midterm Grades: A Reminder

Your success in life is not defined by grades.
You are not defined by grades.

v We know all of this seems critically important right now, but we promise,
the numbers on a transcript will fade with time. I (Elba) personally got
both the highest and lowest midterm grades in my classes at some point
in my college career.

v We’ll release grades later this week!
§ Regrade requests will be open for a week – please let us know if anything looks

amiss!
3

CSE 351, Spring 2024L22: System Control Flow & Processes

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory,

Memory Allocation

So far we’ve been viewing concepts from
 the perspective of a single program…

v How do we maintain logical consistency in the face of more data and
more processes?
§ How do we support control flow both within many processes and things external to

the computer?
§ How do we support data access, including dynamic requests, across multiple

processes? (Hint: Virtual memory next time!)

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

4

⋮

CSE 351, Spring 2024L22: System Control Flow & Processes

Reading Review

v Terminology:
§ Exceptional control flow, event handlers
§ Operating system kernel
§ Exceptions: interrupts, traps, faults, aborts
§ Processes: concurrency, context switching, fork-exec model, process ID

5

CSE 351, Spring 2024L22: System Control Flow & Processes

Leading Up to Processes

v System Control Flow
§ Control flow
§ Excep1onal control flow
§ Asynchronous excepXons (interrupts)
§ Synchronous excepXons (traps & faults)

6

CSE 351, Spring 2024L22: System Control Flow & Processes

Control Flow

v So far: we’ve seen how the flow of control changes as a single program
executes, mainly within the program.

v Reality: multiple programs running concurrently
§ How does control flow across the many components of the system?
§ In particular: We usually have more programs running than CPUs…

v Exceptional control flow is basic mechanism used for:
§ Transferring control between processes and OS
§ Handling I/O and virtual memory within the OS
§ Implementing multi-process apps like shells and web servers
§ Implementing concurrency

7

CSE 351, Spring 2024L22: System Control Flow & Processes

Control Flow

v Processors do only one thing:
§ From startup to shutdown, a CPU simply reads and executes (interprets) a

sequence of instrucXons, one at a Xme
§ This sequence is the CPU’s control flow

8

<startup>
instr1
instr2
instr3
…
instrn
<shutdown>

Physical control flow

time

CSE 351, Spring 2024L22: System Control Flow & Processes

Altering the Control Flow
v Up to now, two ways to change control flow:

§ Jumps (condiFonal and uncondiFonal)
§ Call and return
§ Both react to changes in program state

v Processor also needs to react to changes in system state:
§ Unix/Linux user hits “Ctrl-C” at the keyboard
§ User clicks on a different applicaFon’s window on the screen
§ Data arrives from a disk or a network adapter
§ InstrucFon divides by zero
§ System Fmer expires (important later!)

v Can jumps and procedure calls achieve this?
§ No – the system needs mechanisms for “excep&onal” control flow!

9

CSE 351, Spring 2024L22: System Control Flow & Processes

Exceptional Control Flow

Exists at all levels of a computer system:

v Low level mechanisms
§ Exceptions

• Change in processor’s control flow in response to a system event
(i.e., change in system state, user-generated interrupt)

• Implemented using a combination of hardware and OS software

v Higher level mechanisms
§ Process context switch

• Implemented by OS software and hardware timer

§ Signals
• Implemented by OS software 🚨🚨
• We won’t cover these in detail—see CSE 451 and EE/CSE 474

10

🚨 🚨

CSE 351, Spring 2024L22: System Control Flow & Processes

Exceptions (Review)

v An exception is transfer of control to the operating system (OS) kernel in response to
some event (i.e., change in processor state)

§ Kernel is the operating system code that lives in memory, very VIP
§ Examples: division by 0, page fault, I/O request completes, Ctrl-C

v How does the system know where to jump to in the OS?
11

User Code OS Kernel Code

excep'on
exception processing by
exception handler, then:
• return to current_instr, or
• return to next_instr, or
• abort

current_instr
next_instr

event

CSE 351, Spring 2024L22: System Control Flow & Processes

Exception Table
v A jump table for excepXons (also called Interrupt Vector Table)

§ Each type of event has a unique
excepFon number 𝑘

§ 𝑘 = index into excepFon table
(a.k.a. interrupt vector)

§ Handler 𝑘 is called each Fme
excepFon 𝑘 occurs

12

0
1
2 ...

n-1

Exception
Table

code for
excep@on handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

This is extra
(non-testable)

material

CSE 351, Spring 2024L22: System Control Flow & Processes

Exception Table (Excerpt)

13

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS-defined Interrupt or trap

This is extra
(non-testable)

material

CSE 351, Spring 2024L22: System Control Flow & Processes

Leading Up to Processes

v System Control Flow
§ Control flow
§ Exceptional control flow
§ Asynchronous exceptions (interrupts)
§ Synchronous exceptions (traps & faults)

14

CSE 351, Spring 2024L22: System Control Flow & Processes

Asynchronous Exceptions (Review)
v Interrupts: caused by events external to the processor:

§ Indicated by setting the processor’s interrupt pin(s) (wire into CPU)
§ After interrupt handler runs, the handler returns to “next” instruction

v Examples:
§ I/O interrupts

• Hitting Ctrl-C on the keyboard
• Clicking a mouse button or tapping a touchscreen
• Arrival of a packet from a network
• Arrival of data from a disk

§ Timer interrupt
• Every few milliseconds, an external timer chip triggers an interrupt
• Used by the OS kernel to take back control from user programs

15

CSE 351, Spring 2024L22: System Control Flow & Processes

Synchronous Exceptions (Review)
v Caused by events that occur as a result of execuXng an instrucXon:

§ Traps (why is it called this?)

• Inten9onal: transfer control to OS to perform some funcFon
• Examples: system calls, breakpoint traps, special instrucFons
• Returns control to “next” instrucFon, because we wanted it to happen ❤

§ Faults
• Uninten9onal but possibly recoverable
• Examples: page faults, segment protecFon faults, integer divide-by-zero excepFons
• Either re-executes faulFng (“current”) instrucFon or aborts

§ Aborts
• Uninten9onal and unrecoverable
• Examples: parity error, machine check (hardware failure detected 🥴)
• Aborts the current program

16

https://softwareengineering.stackexchange.com/questions/419110/why-is-it-called-a-trap-instruction

CSE 351, Spring 2024L22: System Control Flow & Processes

System Calls

v Each system call has a unique ID number
v Examples for Linux on x86-64:

17

Number Name Description
0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to process

These are
not the same
as exception

numbers!

Files

Processes

CSE 351, Spring 2024L22: System Control Flow & Processes

Traps Example: Opening File
v User calls open(filename, options)
v Calls __open function, which invokes system call instruction syscall

18

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2
e5d7e: 0f 05 syscall # return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code OS Kernel code

Exception

Open file
Returns

syscall
cmp

¢ %(r|e)ax contains syscall number (weird…)
¢ Other arguments in %rdi, %rsi, %rdx, %r10,

%r8, %r9
¢ Return value in %rax
¢ Negative value is an error corresponding to

negative errno

CSE 351, Spring 2024L22: System Control Flow & Processes

v User writes to memory location
v That portion (page) of user’s memory is currently on disk and not in memory

v Page fault handler must load page into physical memory
v Returns to faulting instruction: mov is executed again!

§ Successful on second try

Fault Example: Page Fault

19

int a[1000];
int main () {
 a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault
Create page and
load into memory
(nothing more!)

returns

movl
handle_page_fault:

CSE 351, Spring 2024L22: System Control Flow & Processes

Abort Example: Invalid Memory Reference

v Page fault handler detects invalid address
v Sends SIGSEGV signal to user process
v User process exits with “segmentation fault”

20

int a[1000];
int main() {
 a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process

exception: page fault

detect invalid address
movl

signal process

handle_page_fault:

OS Kernel code

CSE 351, Spring 2024L22: System Control Flow & Processes

Processes

v Processes and context switching
v Creating new processes

§ fork(), exec*(), and wait()

v Zombies

21

CSE 351, Spring 2024L22: System Control Flow & Processes

Process 1

What is a process? (Review)

CPU

Registers %rip

Memory

Stack

Heap

Code

Data

Disk

Chrome.exe

It’s an illusion, though!

CSE 351, Spring 2024L22: System Control Flow & Processes

What is a process? (Review)

v A process is an instance of a running program
§ One of the most profound ideas in computer science

v Another abstraction in our computer
§ Provided by the OS
§ OS uses a data structure to represent

each process (contains process ID (PID), etc.)
§ Maintains the interface between the program and the

underlying hardware (CPU + memory)

v What is the difference between:
§ A processor? A program? A process?

23

CSE 351, Spring 2024L22: System Control Flow & Processes

Processes (Review)

v A process is an instance of a running program
§ One of the most profound ideas in computer science

v Process provides each program with two key abstractions:
§ Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

§ Private address space
• Each program seems to have exclusive use of main memory
• Provided by kernel mechanism called virtual memory

v What do processes have to do with exceptional control flow?
§ Exceptional control flow is the mechanism the OS uses to

enable multiple processes to run on the same system
24

CPU

Registers

Memory

Stack
Heap

Code
Data

CSE 351, Spring 2024L22: System Control Flow & Processes

What is a process?

25

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 2

Process 3

Process 4Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

It’s an illusion!

CSE 351, Spring 2024L22: System Control Flow & Processes

What is a process?

26

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

Process 2

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Process 3

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Process 4

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Operating
System

It’s an illusion!

CSE 351, Spring 2024L22: System Control Flow & Processes

Multiprocessing: The Illusion 🔮

v Computer runs many processes simultaneously
§ Applications for one or more users

• Web browsers, email clients, editors, …

§ Background tasks
• Monitoring network & I/O devices

27

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data

CSE 351, Spring 2024L22: System Control Flow & Processes

MulNprocessing: The Reality

v Single processor executes multiple processes concurrently
§ Process executions interleaved, CPU runs one at a time
§ Address spaces managed by virtual memory system (we’ll get to it!)
§ Execution context (register values, stack, …) for other processes saved in memory

28

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…
Stack
Heap

Code
Data

Saved
registers

CSE 351, Spring 2024L22: System Control Flow & Processes

Memory

Stack
Heap

Code
Data

Saved
registers

Multiprocessing (Review)

v Context switch
1) Save current registers in memory

29

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Opera6ng
System

CSE 351, Spring 2024L22: System Control Flow & Processes

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

v Context switch
1) Save current registers in memory
2) Schedule next process for execution

30

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Multiprocessing (Review)

CSE 351, Spring 2024L22: System Control Flow & Processes

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Multiprocessing (Review)

31

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

v Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

CSE 351, Spring 2024L22: System Control Flow & Processes

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Multiprocessing: The (Modern) Reality

v Multicore processors
§ Multiple CPUs (“cores”) on single chip
§ Share main memory (and some of the caches)
§ Each can execute a separate process

• Kernel schedules processes to cores
• Still constantly swapping processes

32

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

CPU

Registers

CSE 351, Spring 2024L22: System Control Flow & Processes

Concurrent Processes

v Each process is a logical control flow
v Two processes run concurrently (are concurrent) if their instruction

executions/flows overlap in time
§ Otherwise, they are sequential

v Example: (running on single core)
§ Concurrent: A & B, A & C
§ Sequential: B & C

33

Process A Process B Process C

time

Assume only one CPU core

CSE 351, Spring 2024L22: System Control Flow & Processes

User’s View of Concurrency

v Control flows for concurrent processes are physically
disjoint in time
§ CPU only executes instructions for one process at a time

v However, the user can think of concurrent processes as executing at the
same time, in parallel

34

Process A Process B Process C

tim
e

Process A Process B Process CUser View

Assume only one CPU core

CSE 351, Spring 2024L22: System Control Flow & Processes

v Processes are managed by a shared chunk of OS code called the kernel
§ The kernel is not a separate process, but rather runs as part of a user process

v In x86-64 Linux:
§ Same address in each process

refers to same shared
memory location*

Context Switching

35

* sort of, the story here became
more complicated after
Meltdown and Spectre…

Assume only one CPU core

CSE 351, Spring 2024L22: System Control Flow & Processes

Context Switching (Review)

v Processes are managed by a shared chunk of OS code called the kernel
§ The kernel is not a separate process, but rather runs as part of a user process

v Context switch passes control flow from one process to another and is
performed using kernel code

36

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

Excep'on

Assume only one CPU core

CSE 351, Spring 2024L22: System Control Flow & Processes

Processes & Context Switching Summary

v Exceptions
§ Events that require non-standard control flow
§ Generated asynchronously (interrupts) or synchronously (traps and faults)
§ After an exception is handled, either:

• Re-execute the current instruction
• Resume execution with the next instruction
• Abort the process that caused the exception

v Processes
§ Only one of many active processes executes at a time on a CPU, but each appears

to have total control of the processor
§ OS periodically “context switches” between active processes

37

CSE 351, Spring 2024L22: System Control Flow & Processes

Processes

v Processes and context switching
v CreaFng new processes

§ fork() and exec*()

v Ending a process
§ exit(), wait(), waitpid()
§ Zombies

38

CSE 351, Spring 2024L22: System Control Flow & Processes

Process 2

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs

39

Chrome.exe

Process 1

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

fork()

exec*()

CSE 351, Spring 2024L22: System Control Flow & Processes

Creating New Processes & Programs

v fork-exec model (Linux):
§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address space with the code for

a different program
• Family: execv, execl, execve, execle, execvp, execlp

§ fork() and execve() are system calls

v Other system calls for process management:
§ getpid()
§ exit()

§ wait(), waitpid()

40

CSE 351, Spring 2024L22: System Control Flow & Processes

fork: Creating New Processes

v pid_t fork(void)
§ Creates a new “child” process that is identical to the calling “parent” process, including all state

(memory, registers, etc.)
§ Returns 0 to the child process
§ Returns child’s process ID (PID) to the parent process

v Child is almost identical to parent:
§ Child gets an identical

(but separate) copy of the
parent’s virtual address
space

§ Child has a different PID
than the parent

v fork is unique (and often confusing) because
it is called once but returns “twice”

41

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

CSE 351, Spring 2024L22: System Control Flow & Processes

Summary

v Exceptions
§ Events that require non-standard control flow
§ Generated asynchronously (interrupts) or synchronously (traps and faults)
§ After an exception is handled, either:

• Re-execute the current instruction
• Resume execution with the next instruction
• Abort the process that caused the exception

v Processes
§ Only one of many active processes executes at a time on a CPU, but each appears

to have total control of the processor
§ OS periodically “context switches” between active processes

45

