
CSE 351, Spring 2024L19: Caches IV

Memory & Caches IV
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L19: Caches IV

Announcements, Reminders

v Happy Midterm madness!
v Mid-Quarter Survey on Canvas due tonight!
v HW 16 also due tonight! HW 17/18 due Friday (10 May).
v Lab 3 due Wednesday by 11:59 PM
v Lab 4 releasing on Wednesday-ish.

§ HW 19 helps you prepare for Lab 4 🫡

2

CSE 351, Spring 2024L19: Caches IV

Reading Review

v Terminology:
§ Write-hit policies: write-back, write-through
§ Write-miss policies: write allocate, no-write allocate
§ Cache blocking

3

CSE 351, Spring 2024L19: Caches IV

What about writes? (Review)
v MulAple copies of data may exist:

§ mulEple levels of cache and main memory

v What to do on a write-hit (data already in cache)?
§ Write-through: write immediately to next level
§ Write-back: defer write to next level unEl line is evicted (replaced)

• Must track which cache lines have been modified (using the “dirty bit”)

v What to do on a write-miss (data not in cache)?
§ Write allocate: (“fetch on write”) load into cache, then execute the write-hit policy

• Good if more writes or reads to the loca>on follow
§ No-write allocate: (“write around”) just write immediately to next level

v Typical caches:
§ Write-back + Write allocate, usually
§ Write-through + No-write allocate, occasionally

4

CSE 351, Spring 2024L19: Caches IV

Write-back, Write Allocate Example

5

Note: We are making some unrealistic simplifications to keep this example simple and
focus on the cache policies!

0xBEEFCache: G01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

There is only one set in this tiny
cache, so the tag is the entire
block number! (Because s = 0)

Write-back: defer write to next
level un>l line is evicted
Write-allocate: on a miss, bring
the data into cache

CSE 351, Spring 2024L19: Caches IV

Write-back, Write Allocate Example

6

1) mov $0xFACE, (F)
Write Miss

Not valid x86, assume we mean an
address associated with this block
num

0xBEEFCache: G01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

Step 1: Bring F into
cache

0xCAFE
F

Write-back: defer write to next
level until line is evicted
Write-allocate: on a miss, bring
the data into cache

CSE 351, Spring 2024L19: Caches IV

Write-back, Write Allocate Example

7

Step 1: Bring F into
cache

Step 2: Write
0xFACE to cache
only and set the
dirty bit. Why? Look
at the values!

0xCAFECache: F01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)
Write Miss

0xFACE

Write-back: defer write to next
level until line is evicted
Write-allocate: on a miss, bring
the data into cache

CSE 351, Spring 2024L19: Caches IV

Write-back, Write Allocate Example

8

0xFACECache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)
Write Miss

Step 1: Bring F into
cache

Step 2: Write
0xFACE to cache
only and set the
dirty bit. Why? Look
at the values!

Write-back: defer write to next
level until line is evicted
Write-allocate: on a miss, bring
the data into cache

CSE 351, Spring 2024L19: Caches IV

Write-back, Write Allocate Example

9

Step: Write
0xFEED to cache
only (and set the
dirty bit)

2) mov $0xFEED, (F)
Write Hit

0xFACECache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)
Write Miss

1 0xFEED

Write-back: defer write to next
level until line is evicted
Write-allocate: on a miss, bring
the data into cache

CSE 351, Spring 2024L19: Caches IV

Write-back, Write Allocate Example

10

3) mov (G), %ax
Read Miss

0xFEEDCache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

2) mov $0xFEED, (F)
Write Hit

1) mov $0xFACE, (F)
Write Miss

Write-back: defer write to next level until line is evicted
Write-allocate: on a miss, bring the data into cache

Step 1: Write F back
to memory since it
is dirty

CSE 351, Spring 2024L19: Caches IV

Write-back, Write Allocate Example

11

Step 1: Write F back
to memory since it
is dirty

Step 2: Bring G into
the cache so that
we can copy it into
%ax

3) mov (G), %ax
Read Miss

2) mov $0xFEED, (F)
Write Hit

1) mov $0xFACE, (F)
Write Miss

0xFEEDCache: F11

Valid Dirty Tag Block Contents

0 G 0xBEEF Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

0xFEED

Write-back: defer write to next level until line is evicted
Write-allocate: on a miss, bring the data into cache

CSE 351, Spring 2024L19: Caches IV

Cache Simulator

v Want to play around with cache parameters and policies? Check out our
cache simulator!
§ https://courses.cs.washington.edu/courses/cse351/cachesim/

v Way to use:
§ Take advantage of “explain mode” and navigable history to test your own

hypotheses and answer your own questions
§ Self-guided Cache Sim Demo posted along with Section 7
§ Will be used in HW19 – Lab 4 Preparation

12

https://courses.cs.washington.edu/courses/cse351/cachesim/

CSE 351, Spring 2024L19: Caches IV

Polling Question

v Which of the following cache statements is FALSE?
A. A write-through cache will always match data with the memory

hierarchy level below it
B. We can reduce compulsory misses by decreasing our block size
C. A write-back cache will save time for code with good temporal

locality on writes
D. We can reduce conflict misses by increasing associativity
E. We’re lost…

13

CSE 351, Spring 2024L19: Caches IV

OpEmizaEons for the Memory Hierarchy

v Write code that has locality!
§ Spatial: access data contiguously
§ Temporal: make sure access to the same data is not too far apart in time

v How can you achieve locality?
§ Adjust memory accesses in code (software) to improve miss rate (MR)
• Requires knowledge of both how caches work as well as your system’s

parameters

§ Proper choice of algorithm
§ Loop transformations

14

CSE 351, Spring 2024L19: Caches IV

Example: Matrix Multiplication (Why?)

15

C

= ×

A B

ai* b*j

cij

CSE 351, Spring 2024L19: Caches IV

Matrices in Memory

v How do cache blocks fit into this scheme?
§ Row major matrix in memory:

16

column of matrix (blue) is spread
among cache blocks shown in red

Cache
blocks

CSE 351, Spring 2024L19: Caches IV

Naïve Matrix Multiply

move along rows of A
for (i = 0; i < n; i++)
 # move along columns of B
 for (j = 0; j < n; j++)
 # EACH k loop reads row of A, col of B
 # Also read & write c(i,j) n times
 for (k = 0; k < n; k++)
 c[i*n+j] += a[i*n+k] * b[k*n+j];

17

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

Something to think
about: How many
memory accesses

in this line?

CSE 351, Spring 2024L19: Caches IV

Cache Miss Analysis (Naïve)

v Scenario Parameters:
§ Square matrix (𝑛×𝑛), elements are doubles
§ Cache block size 𝐾 = 64 B = 8 doubles
§ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

v Each itera[on:
§ !
"
+ 𝑛 = #!

"
 misses

18

×=

Ignoring
matrix c

CSE 351, Spring 2024L19: Caches IV

Cache Miss Analysis (Naïve)

v Scenario Parameters:
§ Square matrix (𝑛×𝑛), elements are doubles
§ Cache block size 𝐾 = 64 B = 8 doubles
§ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

v Each itera[on:
§ !
"
+ 𝑛 = #!

"
 misses

§ A`erwards in cache:
(schemaAc)

19

×=

×=
8 doubles wide

Ignoring
matrix c

CSE 351, Spring 2024L19: Caches IV

Cache Miss Analysis (Naïve)

v Scenario Parameters:
§ Square matrix (𝑛×𝑛), elements are doubles
§ Cache block size 𝐾 = 64 B = 8 doubles
§ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

v Each itera[on:
§ !
"
+ 𝑛 = #!

"
 misses

v Total misses: !"
#
	×	𝑛2 = !

#
𝑛3

20

×=

once per element in the 𝑛	×	𝑛 product matrix

CSE 351, Spring 2024L19: Caches IV

Linear Algebra to the Rescue (1)

v Can get the same result of a matrix mul[plica[on by spli^ng the
matrices into smaller submatrices
(matrix “blocks”)

v For example, mul[ply two 4×4 matrices:

21

Ignoring
matrix c

CSE 351, Spring 2024L19: Caches IV

Linear Algebra to the Rescue (2)

22

Matrices of size 𝑛×𝑛, split into 4 blocks of size 𝑟 (𝑛=4𝑟)

C22 = A21B12 + A22B22 + A23B32 + A24B42 = åk A2k*Bk2

Multiplication operates on small “block” matrices
§ Choose size so that they fit in the cache!
§ This technique called “cache blocking”

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

Ignoring
matrix c

CSE 351, Spring 2024L19: Caches IV

Blocked Matrix MulEply

v Blocked version of the naïve algorithm (wtf???):

§ 𝑟 = block matrix size (assume 𝑟 divides 𝑛 evenly)

23

move by rxr BLOCKS now
for (i = 0; i < n; i += r)
 for (j = 0; j < n; j += r)
 for (k = 0; k < n; k += r)
 # block matrix multiplication
 for (ib = i; ib < i+r; ib++)
 for (jb = j; jb < j+r; jb++)
 for (kb = k; kb < k+r; kb++)
 c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

CSE 351, Spring 2024L19: Caches IV

Cache Miss Analysis (Blocked)
v Scenario Parameters:

§ Cache block size 𝐾 = 64 B = 8 doubles
§ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)
§ Three blocks (𝑟×𝑟) fit into cache: 3𝑟2 < 𝐶

v Each block itera[on:
§ 𝑟'/8 misses per block

§ '!
(×

(!

" =
!(
)

24

𝑛/𝑟 blocks𝑟2 elements per sub-matrix, 8 elements per cache block

𝑛/𝑟 blocks in row and in column

×=

Ignoring
matrix c

CSE 351, Spring 2024L19: Caches IV

Cache Miss Analysis (Blocked)
v Scenario Parameters:

§ Cache block size 𝐾 = 64 B = 8 doubles
§ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)
§ Three blocks (𝑟×𝑟) fit into cache: 3𝑟2 < 𝐶

v Each block iteration:
§ 𝑟'/8 misses per block
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

§ Afterwards in cache
(schematic)

25

𝑛/𝑟 blocks𝑟2 elements per sub-matrix, 8 elements per cache block

𝑛/𝑟 blocks in row and in column

×=

×=

Ignoring
matrix c

CSE 351, Spring 2024L19: Caches IV

Cache Miss Analysis (Blocked)
v Scenario Parameters:

§ Cache block size 𝐾 = 64 B = 8 doubles
§ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)
§ Three blocks (𝑟×𝑟) fit into cache: 3𝑟2 < 𝐶

v Each block itera[on:
§ 𝑟'/8 misses per block
§ 2𝑛/𝑟×𝑟2/8 = 𝑛𝑟/4

v Total misses:

§ !(
) ×

!
(

'
= !"

)(26

𝑛/𝑟 blocks𝑟2 elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

×=

number of blocks in product matrix

Compare this to !
#
𝑛3

Ignoring
matrix c

CSE 351, Spring 2024L19: Caches IV

Matrix Multiply Visualization

Here 𝑛 = 100, 𝐶 = 32 KiB, 𝑟 = 30
27

Naïve: Blocked:

≈ 1,020,000
cache misses

≈ 90,000
cache misses

CSE 351, Spring 2024L19: Caches IV

Cache-Friendly Code

v Programmer can optimize for cache performance
§ How data structures are organized
§ How data are accessed

• Nested loop structure
• Blocking is a general technique

v All systems favor “cache-friendly code”
§ Getting absolute optimum performance is very platform specific

• Cache size, cache block size, associativity, etc.
§ Can get most of the advantage with generic coding rules

• Keep working set reasonably small (temporal locality)
• Use small strides (spatial locality)
• Focus on inner loop code

28

