L19: Caches IV CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

Memory & Caches IV

CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:

Ellis Haker

Adithi Raghavan
Aman Mohammed
Brenden Page
Celestine Buendia
Chloe Fong

Claire Wang
Hamsa Shankar

The cache when you ask for
something that was just evicted:

Maggie Jiang
Malak Zaki
Naama Amiel
Nikolas McNamee
Shananda Dokka
Stephen Ying

Will Robertson

I've never met this man in myjghfe

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Announcements, Reminders

+» Happy Midterm madness!

+» Mid-Quarter Survey on Canvas due tonight!

+» HW 16 also due tonight! HW 17/18 due Friday (10 May).
+» Lab 3 due Wednesday by 11:59 PM

+» Lab 4 releasing on Wednesday-ish.
= HW 19 helps you prepare for Lab 4 “¢

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Reading Review

+» Terminology:
= Write-hit policies: write-back, write-through
= Write-miss policies: write allocate, no-write allocate

= Cache blocking

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

What about writes? (Review)

Multiple copies of data may exist:

"= multiple levels of cache and main memory

)
0’0

What to do on a write-hit (data already in cache)?
= Write-through: write immediately to next level

*

= Write-back: defer write to next level until line is evicted (replaced)
Must track which cache lines have been modified (using the “dirty bit”)

*

What to do on a write-miss (data not in cache)?

= Write allocate: (“fetch on write”) load into cache, then execute the write-hit policy
- Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

L4

Typical caches:
" Write-back + Write allocate, usually
= Write-through + No-write allocate, occasionally

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Write-back: defer write to next

Write-back, Write Allocate Example level until line is evicted

Write-allocate: on a miss, bring
the data into cache

- J
Valid Dirty Tag Block Contents Block ;
. Num N
Cache: 1] |o|| G OXBEEF Memory: :
i F OxCAFE
There is only one set in this tiny :
cache, so the tag is the entire G OXB.EEF
block number! (Because s = 0) S

Note: We are making some unrealistic simplifications to keep this example simple and
focus on the cache policies!

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

. . Write-back: defer write to next
Write-back, Write Allocate Example level until line is evicted
Write-allocate: on a miss, bring

Not valid x86, assume we mean an the data into cache

1) mov $ OxFACE (F) <« address associated with this block _ Y,
! num
Write Miss
Valid Dirty Tag Block Contents Block .
. N o
Cache: 1| [o F 0xBEEF Memory: um :
F OxCAFE
Step 1: Bring F into G OxB.EEF
cache .

WA/ UNIVERSITY of WASHINGTON

L19: Caches IV

Write-back, Write Allocate Example

1) mov $SO0xFACE, (F)

Block Contents

Write Miss
Valid Dirty Tag
Cache: 1110 F

OxFACE

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit. Why? Look
at the values!

Memory:

CSE 351, Spring 2024

Write-back: defer write to next
level until line is evicted
Write-allocate: on a miss, bring
the data into cache

_

J

Block X
Num :
F OxCAFE
G OxBEEF

WA/ UNIVERSITY of WASHINGTON

L19: Caches IV

Write-back, Write Allocate Example

1) mov $SO0xFACE, (F)

Block Contents

Write Miss
Valid Dirty Tag
Cache: 1111 F

OxFACE

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit. Why? Look
at the values!

Memory:

CSE 351, Spring 2024

Write-back: defer write to next
level until line is evicted
Write-allocate: on a miss, bring
the data into cache

_

J

Block X
Num :
F OxCAFE
G OxBEEF

WA/ UNIVERSITY of WASHINGTON L19: Caches IV

Write-back, Write Allocate Example

2) mov $OXFEED, (F)

Write Hit
Valid Dirty Tag Block Contents
Cache: 1| |1 F 0XFEED Memory:
Step: Write

OxFEED to cache

only (and set the
dirty bit)

CSE 351, Spring 2024

Write-back: defer write to next
level until line is evicted
Write-allocate: on a miss, bring
the data into cache

J

_
Block X
Num :
F OxCAFE
G OxBEEF

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Write-back: defer write to next level until line is evicted]

Write-baCk’ Write AI |Ocate Exa m ple [Write-allocate: on a miss, bring the data into cache

3)mov (G), %ax

Read Miss
Valid Dirty Tag Block Contents Block -
: N -
Cache: 1| |2 F 0xFEED Memory: o :
F OxCAFE
Step 1: ertg F ba-ck G O0xBEEF
to memory since it :
is dirty i

10

WA/ UNIVERSITY of WASHINGTON

L19: Caches IV

Write-back, Write Allocate Example [

Valid Dirty

Tag

Block Contents

CSE 351, Spring 2024

Write-back: defer write to next level until line is evicted
Write-allocate: on a miss, bring the data into cache

Cache: 1110

OxXFEED

Memory:

Step 1: Write F back
to memory since it
is dirty

Step 2: Bring G into
the cache so that
we can copy it into
Tax

3)mov (G), %ax

Read Miss
Block
Num E
F OxCAFE
G OxBEEF

11

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Cache Simulator

+» Want to play around with cache parameters and policies? Check out our
cache simulator!

" https://courses.cs.washington.edu/courses/cse351/cachesim/

«» Way to use:
= Take advantage of “explain mode” and navigable history to test your own
hypotheses and answer your own questions
= Self-guided Cache Sim Demo posted along with Section 7
= Will be used in HW19 — Lab 4 Preparation

12

https://courses.cs.washington.edu/courses/cse351/cachesim/

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Polling Question

+» Which of the following cache statements is FALSE?

A.

We can reduce compulsory misses by decreasing our block size

A write-back cache will save time for code with good temporal
locality on writes

D. We can reduce conflict misses by increasing associativity

We’re lost...

13

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Optimizations for the Memory Hierarchy

+» Write code that has locality!

= Spatial: access data contiguously
= Temporal: make sure access to the same data is not too far apart in time

+» How can you achieve locality?

" Adjust memory accesses in code (software) to improve miss rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm

" Loop transformations

14

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Example: Matrix Multiplication (Why?)

A
EEEEEEEE

Q)

*

O
X

15

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Matrices in Memory

« How do cache blocks fit into this scheme?

= Row major matrix in memory:

Cache /

blocks . —

N

column of matrix (blue) is spread /

among cache blocks shown in red .

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Naive Matrix Multiply

move along rows of A
for (1 = 0; 1 < n; 1++)
move along columns of B
for (j = 0; 7 < n; J++)
EACH k loop reads row of A, col of B
Also read & write c(i,j) n times
for (k = 0; k < n; k++)
cl[i*n+j] += al[i*n+k] * bl[k*n+]];

X

Something to think /

about: How many . . :
memory accesses C(i,j) C(i,j) Ai,:)
in this line? [— | N - T B(:j)

17

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Cache Miss Analysis (Naive) {lgnoringJ

matrix ¢

<« Scenario Parameters:

= Square matrix (nXn), elements are doubles
® Cache block size K =64 B=8 doubles

= Cachesize C < n (much smaller than n)

« Each iteration:

1
X

n on)
" — 4+ 1n = —misses
8 8

18

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Cache Miss Analysis (Naive) [lgnoringJ

matrix ¢

<« Scenario Parameters:

= Square matrix (nXn), elements are doubles
" Cache block size K =64 B=8 doubles

" Cachessize C <K n (much smaller than n)

« Each iteration:
= X
u 2+n = 9—nmisses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide
19

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Cache Miss Analysis (Naive

<« Scenario Parameters:

= Square matrix (nXn), elements are doubles
® Cache block size K =64 B=8 doubles

= Cachesize C < n (much smaller than n)

« Each iteration:

1
X

n on)
" — 4+ 1n = —misses
8 8

. 9N 9
+ Total misses: - X Né = gn?’

once per element in the n X n product matrix
20

WA/ UNIVERSITY of WASHINGTON

L19: Caches IV

Linear Algebra to the Rescue (1)

+» Can get the same result of a matrix multiplication by splitting the

matrices into smaller submatrices

(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

(11

aA--
A — a21
31
LA 41

Q12 Q13 Qqq7
App Qa3 Qpa| _ [A1n Apz
A3z Q33 Qd3zg A,y Ay,
Qg Qg3 Qgq-

], with B defined similarly.

(Al'lBll +A12B21) (A11312 + AIZBZZ)

AB = ’
(A21B11 +A3,851) (Ap1B12 + A2,8;;)

CSE 351, Spring

2024

|

lgnoring
matrix c

|

21

WA/ UNIVERSITY of WASHINGTON L19: Caches IV

Linear Algebra to the Rescue (2)

Matrices of size nXn, split into 4 blocks of size r (n=4r)

Cyy = Ay1Biy + ApyByoy + ApsBay + AyuByy = 20 Ay *Byy

Multiplication operates on small “block” matrices
" Choose size so that they fit in the cache!
= This technique called “cache blocking”

CSE 351, Spring 2024

|

lgnoring
matrix c

22

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Blocked Matrix Multiply

+ Blocked version of the naive algorithm (wtf???):

move by rxr BLOCKS now

for (1 = 0; 1 < n; i += 1)
for (Jj = 0; J < n; J += r)
for (k = 0; k < n; k += 1)

block matrix multiplication
for (ib = 1i; ib < 1i+r; 1b++)
for (jb = 73, Jb < j+r; Jb++)
for (kb = k; kb < k+r; kb++)
c[ib*n+jb] += al[ib*n+kb]*b[kb*n+jb];

" r = block matrix size (assume r divides n evenly)

23

WA/ UNIVERSITY of WASHINGTON L19: Caches IV

Cache Miss Analysis (Blocked)

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
" Cachessize € <« n (much smaller than n)
= Three blocks M (rXxr) fit into cache: 3r2 < C

r2elements per sub-matrix, 8 elements per cache block

kX Eacf)/b/lock iteration: M HEEEN

= 2 /8 misses per block

2n r? nr
| [e —

r 8 4
\ n/r blocks in row and in column

X

n/r blocks

A

r

N\

CSE 351, Spring 2024

|

lgnoring
matrix c

24

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

matrix ¢

Cache Miss Analysis (Blocked) ['gnoringJ

<« Scenario Parameters:

= Cache block size K =64 B = 8 doubles
= Cachessize C < n (much smaller than n)

= Three blocks M (rXxr) fit into cache: 3r2 < C

n/r blocks
A

r2 elements per sub-matrix, 8 elements per cache block
'd N\

& Eacf)/b/lock iteration: M HEEEN

= 2 /8 misses per block
" 2n/rxr?/8 = nr/4

n/r blocks in row and in column

= Afterwards in cache] EEEER
(schematic)

X

1
X

25

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Cache Miss Analysis (Blocked) ['8”0””8J

matrix ¢

+ Scenario Parameters:
= Cache block size K =64 B = 8 doubles
= Cachessize C < n (much smaller than n)
= Three blocks M (rXxr) fit into cache: 3r2 < C

r2elements per block, 8 per cache block

& Eacf)/b/lock iteration: M HEEEN

= 12 /8 misses per block
" 2n/rxr?/8 = nr/4

n/r blocks in row and column

n/r blocks

\
>
J

X

« Total misses: number of blocks in product matrix

nr 2 3 : 9
'TXG) =Z—T [Comparethlsto§n3]

26

WA/ UNIVERSITY of WASHINGTON

Matrix Multiply Visualization

Naive:

Cache misses: 551888

~ 1,020,000
cache misses

Here n = 100,

L19: Caches IV CSE 351, Spring 2024

Blocked:

Cache misses: 53,888

~ 90,000
cache misses

=32 KiB, r =30

WA/ UNIVERSITY of WASHINGTON L19: Caches IV CSE 351, Spring 2024

Cache-Friendly Code

+» Programmer can optimize for cache performance

" How data structures are organized

" How data are accessed

- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”

= Getting absolute optimum performance is very platform specific
- Cache size, cache block size, associativity, etc.

= Can get most of the advantage with generic coding rules
- Keep working set reasonably small (temporal locality)
- Use small strides (spatial locality)
- Focus on inner loop code

28

