
CSE 351, Spring 2024L10: x86-64 Programming IV

x86-64 Programming IV
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

CSE 351, Spring 2024L10: x86-64 Programming IV

Announcements, Reminders

v Lab 1b & HW7 due tonight by 11:59 PM!
v You will need to use GDB to get through Lab 2

§ Useful debugger in this class and beyond!
 Tips: https://courses.cs.washington.edu/courses/cse351/24sp/debug/
§ Also, GDB Demo Video on Ed
§ This week’s section will also have some Lab 2 prep, so take advantage!

v Mid-Quarter Evaluation: April 24th, in class
v Midterm: May 6th for 48 hours

§ Week 6’s section (02 May) will be for midterm review 😎

2

https://courses.cs.washington.edu/courses/cse351/24sp/debug/
https://edstem.org/us/courses/56848/lessons/98343/slides/543855

CSE 351, Spring 2024L10: x86-64 Programming IV

Choosing instructions for conditionals

3

if (x < 3) {
 return 1;
}
return 2;

T1: # x < 3:
 movq $1, %rax
 ret
T2: # !(x < 3):
 movq $2, %rax
 ret

cmpq $3, %rdi
 jge T2

cmp a,b test a,b

je “Equal” b == a b&a == 0

jne “Not equal” b != a b&a != 0

js “Sign” (negative) b-a < 0 b&a < 0

jns (non-negative) b-a >=0 b&a >= 0

jg “Greater” b > a b&a > 0

jge “Greater or equal” b >= a b&a >= 0

jl “Less” b < a b&a < 0

jle ”Less or equal” b <= a b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

Register Use(s)

%rdi 1st argument (x)

rsi 2nd argument (y)

%rax return value

CSE 351, Spring 2024L10: x86-64 Programming IV

Choosing instructions for conditionals

4

if (x < 3 && x == y) {
 return 1;
} else {
 return 2;
}

T1: # x < 3 && x == y:
 movq $1, %rax
 ret
T2: # else
 movq $2, %rax
 ret

cmpq $3, %rdi
 setl %al // < (SF^OF)

cmpq %rsi, %rdi
 sete %bl // == 0 (ZF)

testb %al, %bl
 je T2 // == 0 (ZF)

https://godbolt.org/z/Tfrv33

cmp a,b test a,b

je “Equal” b == a b&a == 0

jne “Not equal” b != a b&a != 0

js “Sign” (negative) b-a < 0 b&a < 0

jns (non-negative) b-a >=0 b&a >= 0

jg “Greater” b > a b&a > 0

jge “Greater or equal” b >= a b&a >= 0

jl “Less” b < a b&a < 0

jle ”Less or equal” b <= a b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

https://godbolt.org/z/Tfrv33

CSE 351, Spring 2024L10: x86-64 Programming IV

Reading Review

v Terminology:
§ Label, jump target
§ Program counter
§ Jump table, indirect jump

5

CSE 351, Spring 2024L10: x86-64 Programming IV

Labels

v A jump changes the program counter (%rip)
§ %rip tells the CPU the address of the next instruction to execute

v Labels give us a way to refer to a specific instruction in our assembly/machine
code
§ Associated with the next instruction found in the assembly code (ignores whitespace)
§ Each use of the label will eventually be replaced with something that indicates the final

address of the instruction that it is associated with

6

swap:
 movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

max:
 movq %rdi, %rax
 cmpq %rsi, %rdi
 jg done
 movq %rsi, %rax
done:
 ret

CSE 351, Spring 2024L10: x86-64 Programming IV

Aside: Labels & Jumps in C (goto)

v C allows goto as means of transferring control
§ Closer to assembly programming style
§ Don’t do this!! Bad!!! But if you won’t listen to us, listen to K&R…

7

long absdiff(long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

long absdiff_j(long x, long y)
{
 long result;
 int ntest = (x <= y);
 if (ntest) goto Else;
 result = x-y;
 goto Done;
 Else:
 result = y-x;
 Done:
 return result;
}

CSE 351, Spring 2024L10: x86-64 Programming IV

Aside: Labels & Jumps in C (goto)

8

CSE 351, Spring 2024L10: x86-64 Programming IV

x86 Control Flow

v Condition codes
v Conditional and unconditional branches
v Loops
v Switches

9

CSE 351, Spring 2024L10: x86-64 Programming IV

Compiling Loops

v Other loops compiled similarly
§ Will show variations and complications in coming slides, but may skip

a few examples in the interest of time

v Most important to consider:
§ When should conditionals be evaluated? (while vs. do-while)
§ How much jumping is involved?

10

loopTop: testq %rax, %rax # test variable sum
 je loopDone # test inverse of condition
 <loop body code>
 jmp loopTop # unconditional jump back!
loopDone:

Assembly code:
while (sum != 0) {
 <loop body>
}

C/Java code:

CSE 351, Spring 2024L10: x86-64 Programming IV

Compiling Loops

11

do {
 <loop body>
} while (sum != 0)

loopTop:
 <loop body code>
 testq %rax, %rax
 jne loopTop
loopDone:

x86-64:C:

Do-while Loop:

While Loop:
C: while (sum != 0) {

 <loop body>
}

x86-64:

loopTop: testq %rax, %rax
 je loopDone
 <loop body code>
 jmp loopTop
loopDone:

While Loop (ver. 2):
C: while (sum != 0) {

 <loop body>
}

x86-64:

testq %rax, %rax
 je loopDone
loopTop:
 <loop body code>
 testq %rax, %rax
 jne loopTop
loopDone:

CSE 351, Spring 2024L10: x86-64 Programming IV

For-Loop → While-Loop

12

Init;
while (Test) {
 Body
 Update;
}

While-Loop Version:

Caveat: C and Java have
break and continue
• Conversion works fine for break

• Jump to same label as loop
exit condition

• But not continue: would skip
doing the Update, which it should
do with for-loops

• Must introduce new label at
Update!

for (Init; Test; Update) {
 Body
}

For-Loop:

CSE 351, Spring 2024L10: x86-64 Programming IV

Practice Question

v The following is assembly code for a for-loop; identify the corresponding
parts (Init, Test, Update)

13

 movl $0, %eax
.L2: cmpl %esi, %eax

jge .L4
movslq %eax, %rdx
leaq (%rdi,%rdx,4), %rcx
movl (%rcx), %edx
addl $1, %edx
movl %edx, (%rcx)
addl $1, %eax
jmp .L2

.L4:

Line
1
2
3
4
5
6
7
8
9
10
11

Init: Line #____ Test: Lines #____ Update: Line #____
for (; ;) {…}

Register Use(s)

%eax i

%rdi x

%esi y

CSE 351, Spring 2024L10: x86-64 Programming IV

How did we get here?

v Loops: do the same thing over and over and over again
v Distinction between creating and running programs

§ Values inform which is “better” and which is “worse”

v Modern hardware, modern “house”, historical relics
v Decisions were not an accident!

§ Priorities may have been dated, inconsistent, prejudiced

v First: Who acted as the first computers?
v Also: What were the prevailing narratives that informed

computing during its modern* incarnation?

14

* starting in the early 20th century

CSE 351, Spring 2024L10: x86-64 Programming IV

Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for
efficiency and profit

v “Boring, repetitive work” is “robot work”
v Augmentation is highly valued and exclusive

15

CSE 351, Spring 2024L10: x86-64 Programming IV

Hardware: 351 View (version 1)

16

Memory

CPU
registers

i-cache

data

instructions

o More CPU details:
§ Instructions are held temporarily in the instruction cache
§ Other data are held temporarily in registers

o Instruction fetching is hardware-controlled
o Data movement is programmer-controlled (assembly)

🧮

CSE 351, Spring 2024L10: x86-64 Programming IV

(Modern) Hardware: Historic View

v Computer: one who computes

v Mostly single wealthy women
v “Boring, repetitive work”, doing math quickly

17

The women of Bletchley Park, Credit: BBC

CSE 351, Spring 2024L10: x86-64 Programming IV

Computing in the US

18

Human Computers at JPL, Credit: JPL

Human Computers at NACA, Credit: NASA

v Computer: one who computes
v Observatory calculations @ Harvard (1870s)

CSE 351, Spring 2024L10: x86-64 Programming IV

ENIAC (1945): Augmenting & Automating

19

CSE 351, Spring 2024L10: x86-64 Programming IV

ENIAC (1945): Augmenting & Automating

20

CSE 351, Spring 2024L10: x86-64 Programming IV

EDSAC (1949): Same Thing, Different Continent

21

Electronic
Delay
Storage
Automatic
Calculator

CSE 351, Spring 2024L10: x86-64 Programming IV

EDSAC (1949): Same Thing, Different Continent

22

CSE 351, Spring 2024L10: x86-64 Programming IV

Historical View of Programming

23

Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman
program ENIAC at the University of Pennsylvania, circa 1946.
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

1940s

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

CSE 351, Spring 2024L10: x86-64 Programming IV

CSE 351, Spring 2024L10: x86-64 Programming IV

Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for
efficiency and profit

v “Boring, repetitive work” is “robot work”
v Augmentation is highly valued and exclusive

25

CSE 351, Spring 2024L10: x86-64 Programming IV

Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for
efficiency and profit

v “Boring, repetitive work” is “robot work”
v Augmentation is highly valued and exclusive

26

CSE 351, Spring 2024L10: x86-64 Programming IV

Historic Robots

v Robot: (Czech) compulsory service
§ Slav robota: servitude, hardship

v Robots: tool to replace “unskilled” work, servants

27

CSE 351, Spring 2024L10: x86-64 Programming IV

Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for
efficiency and profit

v “Boring, repetitive work” is “robot work”
§ Performed by those deemed less than human
§ Robot work should be done by robots (non-human)

• “Robot work”: anything unvalued by those with systemic power

§ If the task can’t be automated, use people (less-human)
• Frequently, this ends up being marginalized people, who later have their jobs automated

v Augmentation is highly valued and exclusive

28

CSE 351, Spring 2024L10: x86-64 Programming IV

Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for
efficiency and profit

v “Boring, repetitive work” is “robot work”
§ Performed by those deemed less than human
§ Robot work should be done by robots (non-human)

• “Robot work”: anything unvalued by the powerful

§ If the task can’t be automated, use people (less-human)
• Frequently, this ends up being marginalized people, who later have their jobs automated

v Augmentation is highly valued and exclusive

29

CSE 351, Spring 2024L10: x86-64 Programming IV

Programming, historically

30

Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman
program ENIAC at the University of Pennsylvania, circa 1946.
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

https://s-media-cache-
ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aa
b655e3b4.jpg

1940s

1970s

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg

CSE 351, Spring 2024L10: x86-64 Programming IV

Oh god, how did we get here?

31

For a truly educational blog on this retro game, see here!

https://retro365.blog/2023/12/08/interlude-turn-your-love-life-into-exciting-adventurous-delicious-fun-1980-style/

CSE 351, Spring 2024L10: x86-64 Programming IV

Modern Robots: Personal Computers

32

CSE 351, Spring 2024L10: x86-64 Programming IV

Prevailing Narratives in Computer Science

35

v “Boring, repetitive work” should be automated or augmented for
efficiency and profit

v “Boring, repetitive work” is “robot work”
§ Performed by those deemed less than human
§ Robot work should be done by robots (non-human)

• “Robot work”: anything unvalued by the powerful

§ If the task can’t be automated, use people (less-human)
• Frequently, this ends up being marginalized people, who later have their jobs automated

v Augmentation is highly valued and exclusive

CSE 351, Spring 2024L10: x86-64 Programming IV

Automation – it’s complicated

v I don’t mean to vilify automation indiscriminately
§ Adaptive cruise control, autopilot, medical devices

v However, we need to consider the values that inform whether specific
tasks should be automated
§ Why should this task be automated?

• 737 MAX with MCAS – Boeing wanted to save money

§ Who does this automation seek to benefit?
• Self driving cars replacing rideshare and taxi drivers

36

