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Announcements, Reminders

v Lab 1b & HW7 due tonight by 11:59 PM!
v You will need to use GDB to get through Lab 2

§ Useful debugger in this class and beyond!
       Tips: https://courses.cs.washington.edu/courses/cse351/24sp/debug/
§ Also, GDB Demo Video on Ed
§ This week’s section will also have some Lab 2 prep, so take advantage!

v Mid-Quarter Evaluation: April 24th, in class
v Midterm: May 6th for 48 hours

§ Week 6’s section (02 May) will be for midterm review 😎

2

https://courses.cs.washington.edu/courses/cse351/24sp/debug/
https://edstem.org/us/courses/56848/lessons/98343/slides/543855
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Choosing instructions for conditionals

3

if (x < 3) {
  return 1;
}
return 2;

T1: # x < 3:
  movq $1, %rax
  ret
T2: # !(x < 3):
  movq $2, %rax
  ret

cmpq $3, %rdi
  jge T2

cmp a,b test a,b

je “Equal” b == a b&a == 0

jne “Not equal” b != a b&a != 0

js “Sign” (negative) b-a < 0 b&a <  0

jns (non-negative) b-a >=0 b&a >= 0

jg “Greater” b >  a b&a >  0

jge “Greater or equal” b >= a b&a >= 0

jl “Less” b <  a b&a <  0

jle ”Less or equal” b <= a b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

Register Use(s)

%rdi 1st argument (x)

rsi 2nd argument (y)

%rax return value
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Choosing instructions for conditionals

4

if (x < 3 && x == y) {
  return 1;
} else {
  return 2;
}

T1: # x < 3 && x == y:
  movq $1, %rax
  ret
T2: # else
  movq $2, %rax
  ret

cmpq $3, %rdi
  setl %al      // < (SF^OF)

cmpq %rsi, %rdi
  sete %bl   // == 0 (ZF)

testb %al, %bl
  je T2        // == 0 (ZF)

https://godbolt.org/z/Tfrv33

cmp a,b test a,b

je “Equal” b == a b&a == 0

jne “Not equal” b != a b&a != 0

js “Sign” (negative) b-a < 0 b&a <  0

jns (non-negative) b-a >=0 b&a >= 0

jg “Greater” b >  a b&a >  0

jge “Greater or equal” b >= a b&a >= 0

jl “Less” b <  a b&a <  0

jle ”Less or equal” b <= a b&a <= 0

ja “Above” (unsigned >) b >U a b&a > 0U

jb “Below” (unsigned <) b <U a b&a < 0U

https://godbolt.org/z/Tfrv33
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Reading Review

v Terminology:
§ Label, jump target
§ Program counter
§ Jump table, indirect jump
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Labels

v A jump changes the program counter (%rip)
§ %rip tells the CPU the address of the next instruction to execute

v Labels give us a way to refer to a specific instruction in our assembly/machine 
code
§ Associated with the next instruction found in the assembly code (ignores whitespace)
§ Each use of the label will eventually be replaced with something that indicates the final 

address of the instruction that it is associated with
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swap:
  movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

max:
   movq %rdi, %rax
   cmpq %rsi, %rdi
   jg   done
   movq %rsi, %rax
done:
   ret
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Aside: Labels & Jumps in C  (goto)

v C allows goto as means of transferring control
§ Closer to assembly programming style
§ Don’t do this!! Bad!!! But if you won’t listen to us, listen to K&R…
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long absdiff(long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}

long absdiff_j(long x, long y)
{
    long result;
    int ntest = (x <= y);
    if (ntest) goto Else;
    result = x-y;
    goto Done;
 Else:
    result = y-x;
 Done:
    return result;
}
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Aside: Labels & Jumps in C  (goto)
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x86 Control Flow

v Condition codes
v Conditional and unconditional branches
v Loops
v Switches
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Compiling Loops

v Other loops compiled similarly
§ Will show variations and complications in coming slides, but may skip 

a few examples in the interest of time

v Most important to consider:
§ When should conditionals be evaluated? (while vs. do-while)
§ How much jumping is involved?
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loopTop:   testq %rax, %rax  # test variable sum
           je    loopDone    # test inverse of condition
           <loop body code>
           jmp   loopTop   # unconditional jump back!
loopDone:

Assembly code:
while ( sum != 0 ) {
   <loop body>
}

C/Java code:
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Compiling Loops
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do {
   <loop body>
} while ( sum != 0 )

loopTop:   
           <loop body code>
           testq  %rax, %rax
           jne    loopTop
loopDone:

x86-64:C:

Do-while Loop:

While Loop:
C: while ( sum != 0 ) {

   <loop body>
}

x86-64:

loopTop:   testq %rax, %rax
           je    loopDone
           <loop body code>
           jmp   loopTop
loopDone:

While Loop (ver. 2):
C: while ( sum != 0 ) {

   <loop body>
}

x86-64:

testq %rax, %rax
           je    loopDone 
loopTop:   
           <loop body code>
           testq %rax, %rax
           jne   loopTop
loopDone:
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For-Loop → While-Loop
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Init;
while (Test) {
    Body
    Update;
}

While-Loop Version:

Caveat:  C and Java have 
break and continue
• Conversion works fine for break

• Jump to same label as loop 
exit condition

• But not continue: would skip 
doing the Update, which it should 
do with for-loops

• Must introduce new label at 
Update!

for (Init; Test; Update) {
    Body
}

For-Loop:
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Practice Question

v The following is assembly code for a for-loop; identify the corresponding 
parts (Init, Test, Update)
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  movl $0, %eax
.L2: cmpl %esi, %eax

jge .L4
movslq %eax, %rdx
leaq (%rdi,%rdx,4), %rcx
movl (%rcx), %edx
addl $1, %edx
movl %edx, (%rcx)
addl $1, %eax
jmp .L2

.L4:

Line
1
2
3
4
5
6
7
8
9
10
11

Init: Line #____   Test: Lines #____  Update: Line #____
for (       ;          ;         ) {…} 

Register Use(s)

%eax i

%rdi x

%esi y
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How did we get here?

v Loops: do the same thing over and over and over again
v Distinction between creating and running programs

§ Values inform which is “better” and which is “worse”

v Modern hardware, modern “house”, historical relics
v Decisions were not an accident!

§ Priorities may have been dated, inconsistent, prejudiced

v First: Who acted as the first computers? 
v Also: What were the prevailing narratives that informed 

computing during its modern* incarnation?
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* starting in the early 20th century
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Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for 
efficiency and profit

v “Boring, repetitive work” is “robot work”
v Augmentation is highly valued and exclusive
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Hardware:  351 View (version 1)
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Memory

CPU
registers

i-cache

data

instructions

o More CPU details:
§ Instructions are held temporarily in the instruction cache
§ Other data are held temporarily in registers

o Instruction fetching is hardware-controlled
o Data movement is programmer-controlled (assembly)

🧮
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(Modern) Hardware: Historic View

v Computer: one who computes

v Mostly single wealthy women
v “Boring, repetitive work”, doing math quickly
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The women of Bletchley Park, Credit: BBC
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Computing in the US
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Human Computers at JPL, Credit: JPL

Human Computers at NACA, Credit: NASA

v Computer: one who computes
v Observatory calculations @ Harvard (1870s)
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ENIAC (1945): Augmenting & Automating
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ENIAC (1945): Augmenting & Automating
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EDSAC (1949): Same Thing, Different Continent
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Electronic 
Delay 
Storage 
Automatic 
Calculator
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EDSAC (1949): Same Thing, Different Continent
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Historical View of Programming
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Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman 
program ENIAC at the University of Pennsylvania, circa 1946.  
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/ 

1940s

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/
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Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for 
efficiency and profit

v “Boring, repetitive work” is “robot work”
v Augmentation is highly valued and exclusive
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Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for 
efficiency and profit

v “Boring, repetitive work” is “robot work”
v Augmentation is highly valued and exclusive
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Historic Robots

v Robot: (Czech) compulsory service
§ Slav robota: servitude, hardship

v Robots: tool to replace “unskilled” work, servants

27
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Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for 
efficiency and profit

v “Boring, repetitive work” is “robot work”
§ Performed by those deemed less than human
§ Robot work should be done by robots (non-human)

• “Robot work”: anything unvalued by those with systemic power

§ If the task can’t be automated, use people (less-human)
• Frequently, this ends up being marginalized people, who later have their jobs automated

v Augmentation is highly valued and exclusive
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Prevailing Narratives in Computer Science

v “Boring, repetitive work” should be automated or augmented for 
efficiency and profit

v “Boring, repetitive work” is “robot work”
§ Performed by those deemed less than human
§ Robot work should be done by robots (non-human)

• “Robot work”: anything unvalued by the powerful

§ If the task can’t be automated, use people (less-human)
• Frequently, this ends up being marginalized people, who later have their jobs automated

v Augmentation is highly valued and exclusive

29



CSE 351, Spring 2024L10:  x86-64 Programming IV

Programming, historically
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Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman 
program ENIAC at the University of Pennsylvania, circa 1946.  
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/ 

https://s-media-cache-
ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aa
b655e3b4.jpg 

1940s

1970s

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg
https://s-media-cache-ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aab655e3b4.jpg
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Oh god, how did we get here? 
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For a truly educational blog on this retro game, see here!

https://retro365.blog/2023/12/08/interlude-turn-your-love-life-into-exciting-adventurous-delicious-fun-1980-style/
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Modern Robots: Personal Computers

32
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Prevailing Narratives in Computer Science
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v “Boring, repetitive work” should be automated or augmented for 
efficiency and profit

v “Boring, repetitive work” is “robot work”
§ Performed by those deemed less than human
§ Robot work should be done by robots (non-human)

• “Robot work”: anything unvalued by the powerful

§ If the task can’t be automated, use people (less-human)
• Frequently, this ends up being marginalized people, who later have their jobs automated

v Augmentation is highly valued and exclusive
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Automation – it’s complicated

v I don’t mean to vilify automation indiscriminately
§ Adaptive cruise control, autopilot, medical devices

v However, we need to consider the values that inform whether specific 
tasks should be automated
§ Why should this task be automated?

• 737 MAX with MCAS – Boeing wanted to save money

§ Who does this automation seek to benefit?
• Self driving cars replacing rideshare and taxi drivers
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