WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

x86-64 Programming |

You don't even check the boundaries

CSE 351 Spring 2024 Zg:cg?:;ng::n;:::tme of the arrays you are assigned with!
Instructor:
Elba Garza
Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel —
Brenden Page Nikolas McNamee LANGUAGE BE?!
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson

Hamsa Shankar

https://tapas.io/episode/753918

https://tapas.io/episode/753918

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Announcements, Reminders

+» Labla and HWS5 due tonight! (8 Apr)
= HW6 due 10 Apr; HW7 due 15 Apr

+ Lab 1b due 15 Apr by 11:59 PM:

= No major programming restrictions, but avoid magic numbers by using C macros
(#define)

= For debugging, can use provided utility functions print_binary_short() and
print_binary_long()

= Pay attention to the output of aisle_test and store_test — failed tests will
show your actual vs. expected

= Can use (up to two) late days to turn in by 17 Apr at 11:59 PM
+» Reminder: 1-on-1 request form on course website!
+» Synthesis questions: our goal is to assess learning, not to be pedantic

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Reading Review

+» Terminology

" |nstruction Set Architecture (ISA): CISC vs. RISC
" |nstructions: data transfer, arithmetic/logical, control flow
- Size specifiers: b, w, 1, q

= Operands: immediates, registers, memory

- Memory operand: displacement, base register, index register,
scale factor

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Review Questions

Assume that the register %rdx currently holds the value:
OX 01 020304050607 08

+» Answer the questions about the following instruction (<instr> <src> <dst>):
subg $1, %rdx
= Operation type: 4/,'7/4,.,8/;6/[*)j’”“/ ,
= Operand types: $$/ —> inmedate o rdy —> /?7,;;%@/
= Operation width: 5,,5'?/ 88 tes

= (extra) Result in %rdx: J
Ox 0] 02 03 04 os 06 0% 0§

~ Ox 00 0000 0O €O oo 00 Of

rﬁDm 01 02 03 04 05 06 0% O

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

The Hardware/Software Interface

< Topic Group 1: Data /\

=" Memory, Data, Integers, Floating Point, Even more applications
Arrays, Structs

« Topic Group 2: Programs

Applications

= x86-64 Assembly, PrOCEdures, StaCkS, Programming Languages
Executables

Operating System

% Topic Group 3: Scale & Coherence
Hardware
® Caches, Processes, Virtual Memory,
Memory Allocation

Physics

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

The Hardware/Software Interface

+ Topic Group 2: Programs /\

= x86-64 Assembly, Procedures, Stacks, Even more applications
Executables :

+ How are programs created and executed on ml
a CPU? : &“’S
" How does your source code become something —
that your computer understands? | Hardware |
= How does the CPU organize and manipulate local ===

d ata ? Physics

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

But First: DefinitionsI et i
nstevetion rentectore
/ 6

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code
= What is directly visible to software
" The “contract” or “blueprint” between hardware and software

+» Microarchitecture: Actual implementation of the architecture

= CSE/EE 469 A
/ /0/)7J/m/

WA/ UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

ISAs are Born: IBM System/360 (1964)

G. M. Amdahl
G. A. Blaauw
F. P. Brooks, Jr.,

Architecture of the IBM System/360

Abstract: The architecture* of the newly announced IBM System/360 features four innovations:

1. An approach to storage which permits and exploits very large capacities, hierarchies of speeds, read-
only storage for microprogram control, flexible storage protection, and simple program relocation.

2. An input/output system offering new degrees of concurrent operation, compatible channel operation,
data rates approaching 5,000,000 characters/second, integrated design of hardware and software, a new
low-cost, multiple-channel package sharing main-frame hardware, new provisions for device status infor-
mation, and a standard channel interface between central processing unit and input/output devices.

3. A truly general-purpose machine organization offering new supervisory facilities, powerful logical pro-
cessing operati nd a wide variety of data formats. .
g operations, a i iety ”/ Thes is /)GN./

4. Strict upward and downward machine-language compatibility over a line of six models having a per-
———

formance range factor of 50.

This paper discusses in detail the objectives of the design and the rationale for the main features of the
architecture. Emphasis is given to the problems raised by the need for compatibility among central process-
ing units of various size and by the conflicting demands of commercial, scientific, real-time, and logical in-
formation processing. A tabular summary of the architecture is shown in the Appendices.

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

ISAs are Born: IBM System/360 (1964)

Introduction

The design philosophies of the new general-purpose ma-
chine organization for the IBM System/360 are discu

in this paper.t In addition to showing the architecture*
of the new family of data processing systems, we point out
the various engineering problems encountered in attempts
to make the system design compatible, at the program bit
level, for large and small models. The compatibility was
to extend not only to models of any size but also to their
various applications—scientific, commercial, real-time, and

SO On. phylﬂ'&a/

% The term architecture is used here {o describe the[;ttributes of a
system as seen by the programmer:]i.c., structure and
functional behavior, as distinct from the @rganization’ 9f the data flow
and controls, the logical design, and the physica ementation.

t Additional details concerning the architecture, engineering design,
programming, and application of the IBM System/360 will appear in a
series of articles in the JBM Systems Journal.

77/3 6/6//'/)/'//‘044) /0@’//;[%-

The section that follows describes the objectives of
the new system design, i.e., that it serve as a base for new
technologies and applications, that it be general-purpose,
efficient, and strictly program compatible in all models.
The remainder of the paper is devoted to the design
problems faced, the alternatives considered, and the deci-
sions made for data format, data and instruction codes,
storage assignments, and input/output controls.

Design objectives

The new architecture builds upon but differs from the de-
signs that have gradually evolved since 1950. The evolution
of the computer had included, besides major technological
improvements, several important systems concepts and
developments:

CSE 351, Spring 2024

10

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Instruction Set Architectures (Review)

« The ISA defines:
"= The system’s state e.g., registers, memory, program counter (PC)
" The instructions the CPU can execute

" The effect that each of these instructions will have on the system state

CPU

PC Memory

Registers

11

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

General ISA Design Decisions (Horn 1o it conpols wehihets

J/ec/a/ea/ heavi ly aboot. LSAs ave
. varel, vated These dhys.
« Instructions]~ i)

" What instructions are available? What do they do?
= How are they encoded?

+» Registers
" How many registers are there?
" How wide are they?

«» Memory

"= How do you specify a memory location?

CSE 351, Spring 2024

12

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Instruction Set Philosophies (Review)

+» Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed

= |ots of tools for programmers to use, but hardware must be able to handle
all instructions

'[)[(86-64 is CISCjbut only a small subset of instructions encountered with
InuX programs

+» Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

Sewi =_Coined in 1980, but concept arguably existed before that (IBM 801,

papcr:/
'r. oo r, Tanenbaum)

A Redoced
_Ej!/z’u;//on Jet
ﬂfmw’”' = |et software do the complicated operations by composing simpler ones

a#e/'l'on ¢

Ditzel 13

= Easier to build fast, less power-hungry hardware

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Instruction Set Philosophies (Review)

+» Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed
= |ots of tools for programmers to use, but hardware must be able to handle
all instructions
= x86-64 is CISC, but only a small subset of instructions encountered with
Linux programs

+ Ex: ADDSUBPS

= “Adds odd-numbered single-precision floating-point values of the first source operand (second operand) with the
corresponding single-precision floating-point values from the second source operand (third operand); stores the
e'eM), result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single-
l precision floating-point values from the second source operand from the corresponding single-precision floating
;)%M“\’ﬁ 'a values in the first source operand; stores the result into the even-numbered values of the destination operand.”
2

Al

14

WA/ UNIVERSITY of WASHINGTON

Mainstream ISAs

®

intel

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 6-bit), 1985 (32-bit), 2003
(64-bit)
Design CISC
Type Register—-memory

Encoding Variable (1 to 15 bytes)
Branching Condition code

Endianness Little

PCs, some Macs
(Core i3, i5,i7, M)
x86-64 Instruction Set

LO7: x86-64 Programming |

ARM

Designer Arm Holdings

Bits 32-bit, 64-bit

Introduce

Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions; ARMv7 user-
space compatibility.[!]

Branching Condition code, compare and

branch

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
M1/M2 Macs (new!)

ARM Instruction Set

7
RISC

RISC-V
Designer University of California,
Berkeley
Bits 32-64-128
Introduced
Design RISC
Type Load-store
Encoding Variable
Endianness Little['I]

Mostly research
(some traction in embedded)
RISC-V Instruction Set

N

S

00{66

\fug

CSE 351, Spring 2024

l
o

e

15

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Architecture Sits at the Hardware Interface Fogoled o

Source code Compiler Architecture Hardware vi

Different applications Perform optimizations, Instruction set F)ifferent .

or algorithms generate instructions implementations
P R) Js Intel Pentium 4
1 C Language : UJ.
1 | Y/ / Intel X
| | Program : mmmmmmm o \ ntet Acon
A | | |
| | GCC e Intel Core i7
, Lo e me s
1 () M0
| Program i AMD Ryzen i A
: B 1 s XXé/
! AMD Epyc foo!
: Clang ~_ \ ___________
I | :
| Your : , ARMv8 ARM Cortex-A53
' | program ! | (AArch64/A64) |

|

: ! Lo Apple M1

Transform C programs to “very elementary instructions” executable by hardware

16

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Architecture Sits at the Hardware Interface

Source code Compiler Architecture Hardware
or algorithms generate instructions implementations
. multstore: hex:
long mult2(long, long); bushg %rbx o3
. " movq %rdx, %rbx 48 89 d3
voignguititggiéi?zg 53.long y, long *dest) { GCC call mults -3 00 00 00 00
*dest = t; C movq %rax, (%rbx) 48 89 03
} ’ popq %rbx 5b
ret c3
Binary:
0101 o011

0100 1000 1000 1001 1101 0011

1110 1000 0000 00O ©VVO VOO VOO VOO 0O VOO
0100 1000 1000 1001 0000 0011

0101 1011

1100 @011

See Section 3.2.2 in CSPP for more details...

17

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

Writing Assembly Code? Elba, are you serious?!

+» Chances are, you’ll never write a program in assembly, but
understanding assembly is the key to the machine-level execution model:
= Behavior of programs in the presence of bugs

- When high-level language model breaks down

"= Tuning program performance (very unlikely though...)

- Understand optimizations done/not done by the compiler

- Understanding sources of program inefficiency
" Implementing systems software

- What are the “states” of processes that the OS must manage

- Using special units (timers, |/O co-processors, etc.) inside processor!
= Fighting malicious software

- Distributed software is in binary form; how to find out what it’s doing?

CSE 351, Spring 2024

18

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

Assembly Programmer’s View

CPU Memor
Addresses y
Registers .
PC Data e
< > * Data
Condition Instructions e Stack
Codes ‘
+ Programmer-visible state
= PC:the Program Counter (%rip in x86-64)
- Address of next instruction
= Named registers + Memory

- Together in “register file”
Heavily used program data

= Condition codes

- Store status information about most recent
arithmetic operation

Used for conditional branching

= Byte-addressable array
" Code and user data

" |ncludes the Stack (for
supporting procedures)

CSE 351, Spring 2024

19

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming |

CSE 351, Spring 2024

x86-64 Assembly “Data Types”

¢4 bt

+ Integral data of 1, 2, 4, or 8 bytes (b, w, 1, q)
= Data values /
$bit Jewit 32 bib
= Addresses

+ Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
= Different registers for those (e.g., %xmm1, %ymm2)
= Come from extensions to x86 (SSE, AVX, ...) ~

+ No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

Js. ¢ Two commgc:n syntaxes—Must know which you’re reading!
AKA GBell Labs N
= = “AT&T”: used by our course, slides, textbook, gnu tools, ... | @ They have switched

= “Intel”: used by Intel documentation, Intel tools, ... B operand orders! @

5 Not covered
In 351

20

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Instruction Types (Review)

1) Perform arithmetic operation on register or memory data
"=Cc = a + b; zZ = x <L vy; i =h & g;

2) Transfer data between memory and registers

" Load data from memory into register)
gianits Hhic gt Remember: Memory is
- %reg=Mem[address] €— We gy TS Gig . . .
aren Hhesed indexed just like an array

= Store register data into memory of bytes!
- Meml[address] = %reg
~—
3) Control flow: what instruction to execute next
= Unconditional jumps to/from procedures

= Conditional branches

21

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Instruction Sizes and Operands (Review)

+ Instruction operand size specifiers

= b =1-byte “byte”, w = 2-byte “word”,
1 = 4-byte “long word”, q = 8-byte “quad word”

History Note: Due to backwards-compatible support for 8086 programs
(Yes, 16-bit machines from 1978...), “word” means 16 bits = 2 bytes in x86
instruction names @

+» Operand types
" Immediate: Constant integer data ($)
= Register: 1 of 16 general-purpose integer registers (%)
" Memory: Consecutive bytes of memory at a computed address (())

22

WA/ UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

CSE 351, Spring 2024

What is a Register? (Review)

« A location in the CPU that stores a small amount of data, which can be
accessed very quickly (once every clock cycle)

+ Registers have names, not addresses
" |n assembly, they start with(e.g., %rsi)

+ Registers are at the heart of assembly programming

" They are a precious commodity in all architectures, but especially x86-64

Xgé-é‘/ 0/!(/7 /\&J /6 Comloa/g;/ fo /4//'7\/52 5/ /fjllf/fnf./

23

WA/ UNIVERSITY of WASHINGTON

Memory

« Addresses
= Ox7FFFDO24C3DC

+ BIg

= ~16 GiB
Supef
+ Slow

—— >
—

= ~50-100 ns

«» Dynamic

= Can “grow” as needed
while program runs

vs.

LO7: x86-64 Programming | CSE 351, Spring 2024

Registers

Names

%rd-

Small

(16 x8B)=128B
Lo 11

Fast 5; o

sub-nanosecond timescale 7%/1} <] ng

Static

fixed number in hardware

24

WA/ UNIVERSITY of WASHINGTON

LO7: x86-64 Programming |

x86-64 Integer Registers — 64 bits wide

yecidhd nemes vl hen

UJ/? §9 bits

Program Counter
(Very special register)

\ Some when
32 bits

Xrax %eax

%rbx %ebx

XrCX %eCx

%rdx %edx

%rsi %es

%rdi %ed

Holds
) —>1% %es
Stack Pointer 2ol oop
%rbp %ebp

= Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

%rip
2%r8 %r8d
2%r9 %r9d
%rl10 %r10d
%rll %rlld
%rl2 %rl2d
%rl3 %r13d
%rl14 %rlad
%rl15 %r15d

CSE 351, Spring 2024

25

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Some History: IA32 Registers _/53-2 bits wide
g bt nemes. The O6 names!

32'6# seax %ax %ah %al accumulate
Names
b, %ecx %CX %ch %cl counter
g
= %edXx %dx %dh %d1 data
2_ < — |
©
5 %ebx %bx %bh %b1 base
g,
%es %S source index
%edi %d1 destination index
- - -
%esp %Ssp stack pointer
%ebp %bp base pointer
\)
Y
16-bit virtual registers Name Origin

(backwards compatibility) (mostly obsolete)

T haks, §08¢.. 26

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Moving Data

+ General form: mov_ source, destination

= Really more of a “copy” than a “move”
= Like all instructions, missing letter above (_) is the size specifier e.g. movqg, movw
= | ots of these in typical code

27

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

X §6 ¢
Operand Combinations immediate &—> gonshont

ng,';h/ ——> Varisble
Mem &> /e/o/’emrre/

Source Dest Src, Dest C Analog porrel
(Reg movqg $0x4, %rax var_a = 0x4;
Imm
Mem movq $-147, (%rax) xp_a = —147;
movq< Reg movq %rax, %rdx var_d = var_a;
Reg
Mem movqg %rax, (%rdx) xp_d = var_a;
Mem Reg movq (%rax), %rdx var_d = xp_a;

Note: Cannot do memory—m%mory transfer with a single instruction
(,an’- . (o]
" How wouldyoudoit? &, Mem{y —3’/@;4’” rovg (%orax), % rdx

. o ,
e.j. Hant fo z/o:mwi (7 rax), (% vbx) Do_":}w’@ /?7/:/@/ —?/‘/emo(/7 modg %o rdx, (% rbx)

28

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Some Arithmetic Operations

% Binary (two-operand) Instructions:

= Beware argument order!
- src and dst can be immediate, register,
< Oor memory operands
- Results always stored in dst

[Maximum of one memory operand!]

= No distinction between signed
and unsigned

« Only arithmetic vs.
logical shifts

/mm, rii, ot Mem

Computation a /.‘;4;[5:

add:q src, dst dst=dst+src (dst+=src)
subq src, dst dst=dst-src

'imu'l.llq src, dst dst=dst*src signed mult
sarlq src, dst dst=dst>>src Arithmetic
shr'l|q src, dst dst=dst>>src Logical
sh'l.||q src, dst dst=dst<<src (sameassalq)
xor’|q src, dst dst=dst”src
andq src, dst dst=dst&src

orl'q src, dst dst=dst|[src

| - operand size specifier

29

WA/ UNIVERSITY of WASHINGTON

Practice Question

LO7: x86-64 Programming |

CSE 351, Spring 2024

+» Which of the following are valid implementations of rcx = rax + rbx?

Omovq
addq

" addq
addq

O

addq
addq

%rax, %rcx
%rbx, %rcx

SO, %rcx
%rbx, %rcx
%rax, %rcx

" X0rq
addq
addq

%rax,
%rbx,

%rax,
%rax,
%rbx,

XrCX
XrCX

Xrax
XrCX
XrCX

30

WA/ UNIVERSITY of WASHINGTON LO7: x86-64 Programming | CSE 351, Spring 2024

Summary

+» X86-64 is a complex instruction set computing (CISC) architecture

" There are 3 types of operands in x86-64
- Immediate ($), Register (%), Memory (())

" There are 3 types of instructions in x86-64

- Data transfer, Arithmetic, Control Flow

37

