
CSE 351, Spring 2024L06: Floating Point

Floa%ng Point
CSE 351 Spring 2024

h"ps://0.30000000000000004.com

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celes=ne Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

https://0.30000000000000004.com/

CSE 351, Spring 2024L06: Floating Point

Announcements, Reminders

v HW4 due tonight, HW5 due Monday (8 Apr)
§ Ge#ng ahead a bit: no RD due for Friday due to combined RD9/10!

v Lab 1a due Monday (8 Apr)
§ Submit pointer.c and lab1Asynthesis.txt on Gradescope by deadline!

• Make sure there are no lingering printf statements in your code!

§ Can use (up to two) late day tokens to submit up un5l Wednesday 10 Apr at 11:59 PM
§ If you are submiBng with a partner, ensure that you add them to the submission

v Lab 1b due Monday (15 Apr)
§ Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

2

CSE 351, Spring 2024L06: Floating Point

Exams

v Midterm and final exams will be taken on Gradescope
v Open for 48 hours and 72 hours respecKvely, no Kme limit

§ Designed to take 1-3 hours
§ Midterm open May 6th at 00:00, due May 7th at 23:59
§ Final open June 3rd at 00:00, due June 5th at 23:59

v Open book, open notes, open (.*)
§ But not group work—taken individually
§ High-level discussion with classmates OK, but you must write answers on your own

(like labs, but without a partner)

v Mixture of problem-solving, design, and personal reflecKon quesKons
(short answer & open ended)

3

CSE 351, Spring 2024L06: Floating Point

Lab 1b Aside: C Macros

v C macros basics:
§ Basic syntax is of the form: #define NAME expression
§ Allows you to use NAME instead of expression in code
• Does naïve copy and replace before compilaUon – everywhere the characters
NAME appear in the code, the characters expression will now appear instead

• Not the same as a Java constant, but used in a similar way

§ Useful to help with readability/factoring in code

v You’ll use C macros in Lab 1b for defining bit masks
§ See Lab 1b starter code and LC4 slides (card operaKons) for examples

4

CSE 351, Spring 2024L06: Floating Point

Reading Review

v Terminology:
§ normalized scienKfic binary notaKon
§ trailing zeros
§ sign, manKssa, exponent ↔ bit fields S, M, and E
§ float, double
§ biased notaKon (exponent), implicit leading one (manKssa)
§ rounding errors

5

CSE 351, Spring 2024L06: Floating Point

Review Ques=ons

v Convert 11.37510 to normalized binary
scien8fic nota8on

v What is the value (in decimal) encoded by the following
floa8ng-point number?

 0b 0 | 1000 0000 | 110 0000 0000 0000 0000 0000

§ exponent = E – bias, where bias = 2w-1-1
§ manUssa = 1.M

𝟐!𝟏 = 𝟎. 𝟓
𝟐!𝟐 = 𝟎. 𝟐𝟓
𝟐!𝟑 = 𝟎. 𝟏𝟐𝟓
𝟐!𝟒 = 𝟎. 𝟎𝟔𝟐𝟓

6

CSE 351, Spring 2024L06: Floating Point

Number Representa=on Revisited

v What can we represent in one word?
§ Signed and Unsigned Integers
§ Characters (ASCII)
§ Addresses

v How do we encode the following:
§ Real numbers (e.g., 3.14159)
§ Very large numbers (e.g., 6.02×1023)
§ Very small numbers (e.g., 6.626×10-34)
§ Special numbers (e.g., ∞, NaN)

7

Floa%ng
Point

Cram it all into one encoding?!

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point Topics

v Frac3onal binary numbers
v IEEE floa3ng-point standard
v FloaKng-point operaKons and rounding
v FloaKng-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

8

CSE 351, Spring 2024L06: Floating Point

Representa=on of Frac=ons

v Binary Point, like decimal point, signifies boundary between integer and
fracKonal parts:

 Example 6-bit
 representaKon:

v Example:

 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

9

xx.yyyy
21

20 2-1 2-2 2-3 2-4

CSE 351, Spring 2024L06: Floating Point

Binary Scien=fic Nota=on (Review)

v Normalized form: exactly one digit (non-zero) to lea of binary point

v Computer arithmeKc that supports this called floa3ng point due to the
“floaKng” of the binary point
§ Declare such variable in C as float (or double)

10

1.012 × 2-1

radix (base)binary point

exponentman7ssa

CSE 351, Spring 2024L06: Floating Point

IEEE Floating Point

v IEEE 754 (established in 1985)
§ Standard to make numerically-sensitive programs portable
§ Specifies two things: representation scheme and result of floating point operations
§ Supported by all major CPUs

v Driven by numerical concerns
§ Scientists/numerical analysts want them to be as real as possible
§ Engineers want them to be easy to implement and fast.
§ Who won?
 Scientists mostly won out:

• Nice standards for rounding, overflow, underflow, but... complex for hardware
• Float operations can be an order of magnitude slower than integer ops ➔ so slow, it’s used

as a performance gauge! (e.g. FLOPS/s)
11

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point Encoding (Review)

v Use normalized, base 2 scientific notation:
§ Value: ±1 × Mantissa × 2Exponent

§ Bit Fields: (-1)S × 1.M × 2(E–bias)

v Representation Scheme:
§ Sign bit (0 is positive, 1 is negative)
§ Mantissa (a.k.a. significand) is the fractional part of the number in normalized form

and encoded in bit vector M
§ Exponent weights the value by a (possibly negative) power of 2 and encoded in the

bit vector E

12

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE 351, Spring 2024L06: Floating Point

The Exponent Field (Review)

v Use biased notaKon
§ Read exponent as unsigned, but with a bias of 2w-1-1 (bias = 127, for E of 8 bits)
§ Representable exponents roughly ½ posiUve and ½ negaUve
§ Exp = E – bias ↔ E = Exp + bias

• Exponent value of 0 (Exp = 0) is thus represented as E = 0b 0111 1111

v Why biased?
§ Makes floaUng point arithmeUc easier—somewhat compaUble with two’s

complement hardware.
§ Now it’s a sign-and-magnitude representaUon!

13

CSE 351, Spring 2024L06: Floating Point

The Mantissa (Fraction) Field (Review)

v Note the implicit leading 1 in front of M bit vector (Normalized form)
§ Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000

 Read as 1.12 = 1.510, not 0.12 = 0.510 , because of implicit leading 1
§ A “free” extra bit of precision!

v ManKssa “limits”
§ Low values near M = 0b000…000 are close to 2Exp

§ High values near M = 0b111…111 are close to 2Exp+1

14

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE 351, Spring 2024L06: Floating Point

Normalized Floating Point Conversions

v FP → Decimal
1. Append the bits of M to

implicit leading 1 to form
the mantissa.

2. Multiply the mantissa by
2E – bias.

3. Multiply the sign (-1)S.
4. Multiply out the

exponent by shifting the
binary point.

5. Convert from binary to
decimal.

v Decimal → FP
1. Convert decimal to binary.
2. Convert binary to normalized

scienUfic notaUon.
3. Encode sign as S (0/1).
4. Add the bias to exponent and

encode E as unsigned.
5. The first bits ater the leading 1 that

fit are encoded into M.

15

CSE 351, Spring 2024L06: Floating Point

Example & Prac=ce Ques=on

v Convert the decimal number -11.375 into
floaKng point representaKon

Exponent = E – bias ↔ E = Exponent + bias
ManUssa = 1.M

16

𝟐!𝟏 = 𝟎. 𝟓
𝟐!𝟐 = 𝟎. 𝟐𝟓
𝟐!𝟑 = 𝟎. 𝟏𝟐𝟓
𝟐!𝟒 = 𝟎. 𝟎𝟔𝟐𝟓

CSE 351, Spring 2024L06: Floating Point

Precision and Accuracy

v Precision is a count of the number of bits in a computer word used to
represent a value, i.e. capacity for accuracy

v Accuracy is a measure of the difference between the actual value of a
number and its computer representation

High precision permits high accuracy but doesn’t guarantee it. It is
possible to have high precision but low accuracy.

§ Example: float pi = 3.14;
• pi will be represented using all 24 bits of the mantissa (highly precise), but is only an

approximation (not accurate)

17

CSE 351, Spring 2024L06: Floating Point

Need Greater Precision?

v Double Precision (vs. Single Precision) in 64 bits

§ C variable declared as double
§ Exponent bias is now 210–1 = 1023
§ Advantages: greater precision (larger mantissa),

 greater range (larger exponent)
§ Disadvantages: more bits used,

 slower to manipulate
18

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point Topics

v FracKonal binary numbers
v IEEE floaKng-point standard
v Floa3ng-point opera3ons and rounding
v Floa3ng-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

19

CSE 351, Spring 2024L06: Floating Point

Special Cases & Encodings

v Case 1: E and M all zeros → 0
§ Wait, what about the S bit? Two zeros! 🤦
 But at least 0x00000000 = 0 like integers

v Case 2: E = 0xFF, M = 0 → ± ∞
§ e.g., division by 0
§ SUll work in comparisons!

v Case 3: E = 0xFF, M ≠ 0 → Not a Number (NaN)
§ e.g., square root of negaUve number, 0/0, ∞–∞
§ NaN propagates through computaUons
§ Value of M can be useful in debugging 20

But wait, how to represent zero & other fun stuff...?

CSE 351, Spring 2024L06: Floating Point

New Representa=on Limits due to Special Cases

v What’s now the largest value (besides ∞)?
§ E = 0xFF has now been taken by Case 2 & Case 3!
§ E = 0xFE is now largest: 1.1…12×2127 = 2128 – 2104

v What are now the numbers closest to 0? (i.e. M = 0)
§ E = 0x00 taken by Case 1; so next smallest is E = 0x01
§ a = 1.0…002×2-126 = 2-126

§ b = 1.0…012×2-126 = 2-126 + 2-149

§ NormalizaUon and implicit leading 1 are to blame
§ Leads to another Special case: E = 0, M ≠ 0 are denormalized numbers

• Man=ssa has implicit leading 0 instead of implicit leading 1
• Store much smaller numbers

21

0
+∞-∞

Gaps!

a

b

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point Decoding Flow Chart

22

FP Bits What is the
value of E?

What is the
value of M?

−1 &×∞

NaN

−1 &×0.M×2'!()*+

−1 &×1.M×2,!()*+

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

CSE 351, Spring 2024L06: Floating Point

Distribu=on of Values (Review)

v What ranges are NOT representable?
§ Between largest norm and infinity
§ Between zero and smallest denorm
§ Between norm numbers?

v Given a FP number, what’s the next largest representable number?
§ What is this “step” when Exp = 0? 2-23

§ What is this “step” when Exp = 100? 277

v DistribuKon of values is denser toward zero:

23

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)
Underflow (Exp too small)
Rounding

You can represent really large
numbers, or really precise

numbers, but not both!

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point Opera=ons: Basic Idea

v x +f y = Round(x + y)
v x *f y = Round(x * y)

v Basic idea for floaKng point operaKons:
§ First, compute the exact result
§ Then round the result to make it fit into the specified precision (width

of M)
• Possibly over/underflow if exponent outside of range

24

S E M
Value = (-1)S × ManUssa × 2Exponent

CSE 351, Spring 2024L06: Floating Point

Mathema=cal Proper=es of FP Opera=ons

v Overflow yields ±∞ and underflow yields 0
v Floats with value ±∞ and NaN can be used in operaKons

§ Result usually sUll ±∞ or NaN, but not always intuiUve

v FloaKng point operaKons do not work like real math, due to rounding
§ Not associaUve: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
 0 3.14

§ Not distribuUve: 100*(0.1+0.2) != 100*0.1+100*0.2
 30.000000000000003553 30

§ Not cumulaUve
• Repeatedly adding a very small number to a large one may do nothing

25

⚠

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point in C

v Two common levels of precision:
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

v #include <math.h> to get INFINITY and NAN constants
v #include <float.h> for addiKonal constants

v Equality (==) comparisons between floa3ng point numbers are tricky,
and o[en return unexpected results, so just avoid them!

26

⚠

CSE 351, Spring 2024L06: Floating Point

Floating Point Conversions in C

v CasKng between int, float, and double changes the bit
representaKon
§ int → float

• May be rounded (not enough bits in man=ssa: 23)
• Overflow impossible

§ int or float → double
• Exact conversion (all 32-bit ints are representable)

§ long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

§ double or float → int
• Truncates frac=onal part (rounded toward zero)
• “Not defined” when out of range or NaN: generally sets to TMin

(even if the value is a very big posi=ve)
27

⚠

CSE 351, Spring 2024L06: Floating Point

More on Floa=ng Point History

v Early days
§ First design with floaUng-point arithmeUc in 1914 by Leonardo

Torres y Quevedo
§ ImplementaUons started in 1940 by Konrad Zuse, but with

differing field lengths (usually not summing to 32 bits) and
different subsets of the special cases

v IEEE 754 standard created in 1985
§ Primary architect was William Kahan, who won a Turing Award

for this work
§ Standardized bit encoding, well-defined behavior for all

arithmeUc operaUons

28

Kahan

Zuse

Torres

CSE 351, Spring 2024L06: Floating Point

Number Representa=on Really MaUers
v 1991: Patriot missile targeUng error

§ clock skew due to conversion from integer to floa=ng point

v 1996: Ariane 5 rocket exploded ($1 billion)
§ overflow conver=ng 64-bit floa=ng point to 16-bit integer

v 2000: Y2K problem
§ limited (decimal) representa=on: overflow, wrap-around

v 2038: Unix epoch rollover
§ Unix epoch = seconds since 12am, January 1, 1970
§ signed 32-bit integer representa=on rolls over to TMin in 2038

v Other related bugs:
§ 1982: Vancouver Stock Exchange 10% error in less than 2 years
§ 1994: Intel Pen=um FDIV (floa=ng point division) HW bug ($475 million)
§ 1997: USS Yorktown “smart” warship stranded: divide by zero
§ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

29

CSE 351, Spring 2024L06: Floating Point

Summary

v FloaKng point approximates real numbers:

§ Handles large numbers, small numbers, special numbers
§ Exponent in biased notaUon (bias = 2w-1 – 1)

• Size of exponent field determines our representable range
• Outside of representable exponents is overflow and underflow

§ ManUssa approximates fracUonal porUon of binary point
• Size of man=ssa field determines our representable precision
• Implicit leading 1 (normalized) except in special cases
• Exceeding length causes rounding

30

S E (8) M (23)
31 30 23 22 0

CSE 351, Spring 2024L06: Floating Point

Summary

v Floats also suffer from the fixed number of bits available to
represent them
§ Can get overflow/underflow
§ “Gaps” produced in representable numbers means we can lose

precision, unlike ints
• Some “simple frac=ons” have no exact representa=on (e.g., 0.2)
• “Every opera=on gets a slightly wrong result”

v FloaKng point arithmeKc not associaKve or distribuKve
§ MathemaUcally equivalent ways of wriUng an expression may compute

different results

v Never test floaKng point values for equality!
v Careful when converKng between ints and floats!

31

CSE 351, Spring 2024L06: Floating Point

Summary

v Floating point encoding has many limitations
§ Overflow, underflow, rounding
§ Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by

the value of the exponent
§ Floating point arithmetic is NOT associative or distributive

v Converting between integral and floating point data types does change
the bits

32

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE 351, Spring 2024L06: Floating Point

Some addiKonal informaKon about floaKng point
numbers. We won’t test you on this, but you may find
it interesKng J

33

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point Rounding

v The IEEE 754 standard actually specifies different rounding modes:
§ Round to nearest, ties to nearest even digit
§ Round toward +∞ (round up)
§ Round toward −∞ (round down)
§ Round toward 0 (truncation)

v In our tiny example:
§ Mantissa = 1.001 01 rounded to M = 0b001
§ Mantissa = 1.001 11 rounded to M = 0b010
§ Mantissa = 1.001 10 rounded to M = 0b010
§ Mantissa = 1.000 10 rounded to M = 0b000

34

This is extra
(non-testable)

material

S E M
1 4 3

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point Encoding Flow Chart

35

= special case

Value 𝑣 to
encode

Is 𝑣 not a
number?

±∞
E = all 1’s
M = all 0’s

NaN
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when
rounded,
≥ FOver?

Is 𝑣 , when
rounded,

< FDenorm?

Is 𝑣 , when
rounded,
< FUnder?

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No

This is extra
(non-testable)

material

CSE 351, Spring 2024L06: Floating Point

Limits of Interest

v The following thresholds will help give you a sense of when certain
outcomes come into play, but don’t worry about the specifics:

§ FOver = 2!"#$%& = 2'
• This is just larger than the largest representable normalized number

§ FDenorm = 2&(!"#$ = 2()
• This is the smallest representable normalized number

§ FUnder = 2&(!"#$(* = 2(+
• 𝑚 is the width of the mantissa field
• This is the smallest representable denormalized number

36

This is extra
(non-testable)

material

CSE 351, Spring 2024L06: Floating Point

Denormalized Numbers

v Denormalized numbers
§ No leading 1
§ Uses implicit exponent of –126 even though E = 0x00

v Denormalized numbers close the gap between zero
and the smallest normalized number
§ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

§ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

37

So much
closer to 0

This is extra
(non-testable)

material

CSE 351, Spring 2024L06: Floating Point

Floa=ng Point in the “Wild”

v 3 formats from IEEE 754 standard widely used in computer hardware and
languages
§ In C, called float, double, long double

v Common applicaKons:
§ 3D graphics: textures, rendering, rotaUon, translaUon
§ “Big Data”: scienUfic compuUng at scale, machine learning

v Non-standard formats in domain-specific areas:
§ Bfloat16: training ML models;

range more valuable than precision
§ TensorFloat-32: Nvidia-specific

hardware for Tensor Core GPUs

38

Type S
bits

E
bits

M
bits

Total
bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32

This is extra
(non-testable)

material

