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Announcements, Reminders

<+ HW3 due tonight, HW4 due Friday (05 Apr)
% Lab 1a due Monday (8 Apr)

= Use ptestanddlc.py to check your solution for correctness (on the CSE Linux
environment)

= Submit pointer.cand lablAsynthesis.txt to Gradescope

- Make sure you pass the File and Compilation Check — all the correct files were found and there
were no compilation or runtime errors

+» Lab 1b releases tomorrow, due next Monday (15 Apr)

= Bit manipulation on a custom encoding scheme

L)

" Bonus slides at the end of today’s lecture have examples for you to look at &
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Reading Review

+» Terminology:

UMin, UMax, TMin, TMax

Type casting: implicit vs. explicit

Integer extension: zero extension vs. sign extension
Modular arithmetic and arithmetic overflow

Bit shifting: left shift, logical right shift, arithmetic right shift

CSE 351, Spring 2024
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Review Questions

+ What is the value and encoding of Tmin (minimum signed value)
for a fictional 7-bit wide integer data type?

| 0 00 000
2"<|-¢A | A A
+» Forunsigned char uc = G)xBB,,what are the produced data for the
cast (unsigned short)uc? Liso botes = shoet!
ﬂx&? —> x EJOLK_%?

+» What is the result of the following expressions?

" (signed char)uc >> 2 {"1/'705 /071 00/—-—-"" Ob 1110 oo
" (unsigned char)uc >> 3@)3(6“ [XECJ

000
/05 10/ 07T —> Ob 000/0110
9% o gk s
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Why Does Two’s Complement Work?

+ For all representable positive integers x, we theoretically want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

We want the additive inverse!

= What are the 8-bit negative encodings for the following? g
I 7 /
00000001¢” 00000010 <~ 11000011
+ PPV D0D + PPV D0D + P00V 0D

oooooooow
617

00000000 R 7 00000000 ﬁ 7

-— -
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Why Does Two’s Complement Work?

+ For all representable positive integers x, we theoretically want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

= What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 11111111 + 11111110 + 00111101
100000000 100000000 100000000

/

janore Phis; this overFb~ i —
consdgence of mobing fuot complerent [These are the bitwise complement plus 1!J

work! Plos, the fimited nomber -Xx == ~x + 1
of bty doesn’t help... 6
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Integers

+» Binary representation of integers

= Unsigned and signed
= CastinginC

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations
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Values To Remember (Review)

+ Unsigned Values +» Two’s Complement Values
= UMin = 0b00..0 = TMin = 0b10..0
= m = —ZW_H
= UMax = O0bll..1 = TMax = 0b01..1
=,2W—1' = |2 1]
| = -1 = 0bll..l

+~ Example: Values forw = 64

UMax 18,446,744,073,709,551,615 FE FET EFF IR FE EF FF FE //A// 75/

TMax 9,223,372,036,854,775,807 YE EFE EF FF  RFF EFR EFF FF 24 C
TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00 ﬂ"z?e
-1 -1 FE FET FF FF FE EF FF FE /A 2!

0 0O 00 00 00 00 00 00 00 00 WA 0%
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Signed/Unsigned Conversion Visualized

+» Two’s Complement — Unsigned

®
" Ordering Inversion °
= Negative — Big Positive
. ®
4-bit "~ TMax ®
Example:
Oookl
PN\O‘G 2’s Complement 0 PY
gocV P Range| 1111
PPN
_ 10 @ —2
M\‘N O
2
— TMin 1000

UMax
UMax -1

TMax +1
TMax

0/UMin

Unsigned
Range
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In C: Signed vs. Unsigned (Review)

«» Casting Ity all sbwt
= Bits are unchanged, just interpreted differently! « /‘n/e@;/;.,i encoa/fyf./
- int tx, ty; // Lﬁjw/ 5(7 dlf/éd//

-« unsigned int ux, uy;
" Explicit casting: [ /M/We/ over implei# “J//"-Jr--)
« tx =(int) ux;
+ uy = (unsigned int) ty;
= Implicit casting can occur during assignments or function calls:

.« tX = ux; Ao tHher exemple:
. uy = ty; Signed che ez =),

Uﬂ&"/mea’ ch UC = SC; // ve efw/ fo
-

755, rov! ‘/‘

10



WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Casting Surprises (Review) '

+ Integer literals (constants) ®

= By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation

= Use “U” (or “u”) suffix to explicitly force unsigned

. Examples: 0U, 4294967259u  // /o /e;féf[’/ V' pobend 0w
I Uging  soPhx éﬁ&f naiking 12 ’."'[g//o“f
[ a$ dnfﬁnez/ : ﬂod/é fechnicdl, o/o/:ona/.

J

= When you mixed unsigned and signed in a single expression, then signed values
are implicitly cast to unsigned /. €. unf,'/m/ hay /oxg;g/engg /
" |Including comparison operators <, >, ==, <=, >= —

+ Expression Evaluation

"= Yeah, no idea why. Thanks, C.

11
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Integers

+ Binary representation of integers

= Unsigned and signed
= Castingin C

+» Consequences of finite width representations
= Sign extension, overflow

+ Shifting and arithmetic operations

12
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Sign Extension (Review)

+» Task: Given a w-bit signed integer X, convert it to wt+k-bit signed integer
X" with the same value

%+ Rule: Add k copies of sign bit /@;f;ﬂ/[&] p‘jh /S Main /mg/,)
= Let x; be the i-th digit of X in binary

r
o X -_— xw_l, ---,xw_l,‘xw_l, xw_z, ---,xl’ xO’
|

k copies of MISB original X X - ® l/V. >

=X M l l l l l
0b1000 = '810 X' 'YX X0

Male /1S bt 0411000 = =& k= w g

Valve does ot chasge

13
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Two’s Complement Arithmetic

+» The same addition procedure works for both unsigned and
two’s complement integers
= Simplifies hardware: only one algorithm for addition )

= Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum, then modulo by 2%

Fx: 01111
L /
[0000

/

dl'.fddo’/ Vi
Modo o

A

—m

14
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Arithmetic Overflow (Review)

/\}Aﬁ/ /L/0"15/ d‘ﬂ/

« What happens a calculation produces a

result that can’t be represented in the

current encoding scheme?

" |nteger range limited by fixed width

= Can occur in both the positive and negative

directions

TMex . .
« Well... Cand Java ignore overflow exceptions

T;Im'\

BitS/‘bLJnsigned Signed
0000 OUma O
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 (7 %
1000 8 8& |
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 | -2
1111 | (15 -1

= You end up with a bad value in your program and
get no warning/indication... oops!

IF we add | h

'Mi.l; if it overfha?

Ue”:lj&; bHut if takes JS Yo O.
Good overfha! U

15

CSE 351, Spring 2024
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Overflow: Unsignhed

= Addition: drop carry bit (wrong by —2N) \ww : Op\;n
15 1111 1; —-—> AR
+ 2 + 0010
T Z0001 13
’

: 0000
0001
0010

1111
1110
1101

/]a%da/(/z): 1 12 {1100 0011 | 3
‘ . N Unsigned
+ Subtraction: borrow (wrong by +2%) 11\ 1011 neiene 0100 | 4
1 10001 1010 0101
_ 5 _ 0010 10\ 1001 0110 >

1000 0111

;{ 1111
15 ~

Ac/ua/{j

Over/Under by +2N because of Here, ZL/:/A
modular arithmetic

16
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Overflow: Two’s Complement

+ Addition: (+) + (+) = (—) result?

0 0110 _q 0
+ 3 + 0011 -2

1111 0000

| 7 — 1101 0010
AC‘}(M// - 7 N —4 1100 Two’s 0011 * 3
» Subtraction: (—) + (=) = (+)? | 1011 Complement . .
_ +
iy 1001 1010
-3 - 0011 AN "
— 1000 ; 0111 _“ ¢
-1 ) 0110 \ " 7//7

6
[ For signed: overflow happened if operands ]

have same sign and result’s sign is different .
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Integers
Lﬁfvl Fime: 5// /MJ/(J.

« Binary representation of integers
y p g /Uou)/ /oo[fnj ba6/<, we coold heve

= Unsigned and signed isolaked the siit bits via bt
= Casting in C ﬁ”fﬁj instead -
+» Consequences of finite width representations oToli]o]1]o] 1 ]o
= Sign extension, overflow ot Vel .
+» Shifting and arithmetic operations W cod hess Igicalh shitted inshed

|£O 0 0lo 0,’ ol. / /Va/uc

vi Jc/
Suit 0 6/7‘5.

/
o

2
T/)ey e S oppa;e:/ fo

be ’,ﬁ//fﬂ] o/ "

18
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Shift Operations (Review)

67’ me
£ mm/o/w .

0010 0010
0001 0000
0000 1000
0000 1000

|
L//Ieﬁ,

arithmetic:

LOS: Integers Il

+ Left shift (x<<n) bit vector x by n positions
= Fill with @’s on right
+ Right shift (x>>n) bit-vector x by n positions

" For unsigned values: Logical shift—Fill with o’s on left

alnay

s

logical:

arithmetic:

Always: Throw away (drop) extra bits that “fall off” either end

" For signed values: Arithmetic shift—Replicate most significant bit on left.

Maintains sign of x! Exactly like we did with sign extension!

Ex: O0x22 Ex: OxA2

1010 0010
S

0001 0000

0010 1000

1110 1000

CSE 351, Spring 2024
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Shift Operations (Review)

+» Arithmetic:
= |eft shift (x<<n) is equivalent to multiply by 2"
= Right shift (x>>n) is equivalent to divide by 2"
= Compiler Hack: Shifting is faster than general multiply and divide operations!

«» Notes: 03 y
ol o
= Shifts by n<0 or n=>w (w is bit width of x) are undefined of: Uﬁ \S\’“M ‘ Avko"’
0
" In C: behavior of >> is determined by the compiler 6 ¢ 10"0

 In gcc / clang, depends on data type of x (signed/unsigned)
" InJava: logical shiftis >>> and arithmetic shift is >>

20
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Left Shifting 8-bit Example

+» No difference in left shift operation for unsigned and signed numbers
(just manipulates bits)

= Difference comes during interpretation: x*297? (I/. aloc//eaf m//d)
Signed Unsigned No Overflow
X = 25; 00011001 = 25 25 25

L1=x<<2; 00[01100100 100 100 100

— \
L2=x<<L3; OOO_I‘IOOIOOO =%—56 200 200

signed overflow

I.3=x<<4: 000110010000 = =112 144 400

Lo,f/’ Jome
dot:! ———>| unsigned overflow
gl

21




WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Right Shifting 8-bit Examples

<~ Reminder: C operator >> does logical shift on unsigned values and
arithmetic shift on signed values

= Logical Shift: x/2°? (Tn & pechiok wodd)
Unsigned No Rounding

xu = 240u; 11110000 = 240 240

Rlu=xu>>3; 00011110000 = 30 30

R2u=xu>>5; 0000011110000

'/ 7.57

| rounding (down) | 7

22
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Right Shifting 8-bit Examples

<~ Reminder: C operator >> does logical shift on unsigned values and
arithmetic shift on signed values
= Arithmetic Shift: x/27?

Signhed No Rounding
xs = -16; 11110000 = -16 -16
Rls=xs>>3; 11111110000 = -2 -2
R2s=xs>>5; 1111111110000 = -1 -0.5
rounding (down)

23
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Summary

+ Sign and unsignhed variables in C

= Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we convert/cast between sign
and unsigned numbers
- Type of variables affects behavior of operators (shifting, comparison)

L)

+» We can only represent so many numbers in w bits
= When we exceed the limits, arithmetic overflow occurs
= Sign extension tries to preserve value when expanding
+ Shifting is a useful bitwise operator
= Right shifting can be arithmetic (sign) or logical (0)
= Can be used in multiplication with constant or bit masking

24
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Undefined Behavior in C

+» How much undefined behavior have we talked about in just
the past few lectures?

= Shifting by more than size of type el i

SECOND EDITION

= No bounds checking in arrays

® Pointer nonsense

= Mystery data in unassigned QE
variables PROGRAMMII

) LANGUAGE _ |
= _..and there will be more! & Sarhisibadlboy/can hold somuch

B\ itieTined behaviour iniiv

What does this tell us about the values
that were embedded in C?

25
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C language (1978)

+» Developed beginning in 1971, “standardized” in 1978

= Goal of writing Unix (precursor to Linux, macOS and others)

= Different time— faced with significant performance and resource limits
+ Explicit Goals:
= Portability, performance (better than B, it’s C!)

26
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Your Perspectives on C

< What have you noticed about the way that C works?

= What does it make easy?

¢ Vet/(? aII'JJI’G/'E /"’el"o/j /mmpu/a//@/)

¢ 70/'4/ Jonﬁ/o/ 0/ /}wmoy J’/Mt.’
= What does it make difficult?

o Wit sale  code..
' [//,,',71 ,/‘/
' /0/4 ter  Sorce /J

27
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Perspectives on C

+ Minimalist

CSE 351, Spring 2024

= Relatively small, can be described in a small space, and learned quickly (or so it’s

claimed)
= “Only the bare essentials”
+» Rugged
" Close to the hardware
= Shows what’s really happening
+ Eliteness

= “Real programmers can do pointer arithmetic!”
= Quickly slides into a “Back in my day!” situation...

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

28
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Consequences of C

+» “Cis good for two things: being beautiful

and creating catastrophic Odays in
memory management.” - Link to Medium Post

+» “We shape our tools, and thereafter, our
tools shape us.” — Jjohn culkin, 1967

«» White House says no to C/C++! Is Joe
Biden a rustacean?

CSE 351, Spring 2024

O jamigarner
"cat", short for "C++ Analysis Tool", is a command line utility designed for
analyzing a C++ program and displaying which lines of code are

potentially unsafe

Example:

]
) maln.cpp

int buf([10];
buf[12] = 0;

» ]

Also applies to C, of course.

32


https://medium.com/message/everything-is-broken-81e5f33a24e1
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://rustacean.net/
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Maybe Cis like... cilantro?

-
et B gy

A\f G La //na’ L lwe cilinkn L
» Maybe you love it! S Y - ~uS

» Maybe you hate it!

» Maybe your feelings are
more complicated than

that!

4

D)

- We're not trying to force you one way or another, we only ask that you
try to appreciate both its benefits and its shortcomings.

L)

4

% Mainly using C as a tool to understand computers. ﬁ

33
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BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

+ Extract the 2"d most significant byte of an int
+ Extract the sign bit of a signed int

+ Conditionals as Boolean expressions

34
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Practice Question 1

+» Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the
following expression evaluate to?
" UMin =0, UMax = 255, TMin =-128, TMax =127

+ 127 < (signed char) 128u

35
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Practice Questions 2

+» Assuming 8-bit integers:
=" Ox27 =39 (signed) =39 (unsigned)
= OxD9 =-39 (signed) = 217 (unsigned)
" OX7TF =127 (signed) = 127 (unsigned)
=" Ox81 =-127 (signed) = 129 (unsigned)

+ For the following additions, did signed and/or unsigned overflow occur?
= Ox27 + Ox81

e o

yfmz/ /27 + [3‘7)

No .,m’,jna/ m/c/ﬁod

Unsiped 127, + 217 = 3%

o Saned JG//%O
! 7 ° UﬂJl'fﬂCJ ['s) I/C/ﬂ/Ocs -,/./ 36
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Exploration Questions

For the following expressions, find a value of signed char x,
if there exists one, that makes the expression True.

+» Assume we are using 8-bit arithmetic:

" x == (unsigned char) x Efffg.'&r ﬁi}v)écﬁl‘im
" x >= 1280 el \/x, 0
T e A I s
X T X @ x= 0b00-..00 =0
- Hint: there are two solutions XSOI G) x= %1000 = ~/28
A'ﬁ x whee 7 MSBS

" (x < 1280U) && (x > 0x3F) \ are  0b0)

37
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Using Shifts and Masks

+ Extract the 2" most significant byte of an int:

" First shift, then mask: (x>>16) & OxFF
X 00000001{00000010/00000011 00000100
x>>16 00000000 00000000 00000001100000010
OxXFF 00000000 00000000 00000000 11111111

(x>>16) & OxXFF

00000000 00000000 00000000 00000010

= Or first mask, then shift: (x & OxFF0000)>>16

x 00000001 00000010 00000011 00000100
0xFF0000 00000000 11111111 00000000 00000000

x & 0xFF0000 [00000000/00000010/00000000 00000000
(x&0xFF0000)>>16 00000000 00000000 moooooom

CSE 351, Spring 2024

38
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Using Shifts and Masks

+» Extract the sign bit of a signed int:
® First shift, then mask: (x>>31) & 0Ox1

- Assuming arithmetic shift here, but this works in either case

- Need mask to clear 1s possibly shifted in

X

OD000001 00000010

00000011 00000100

—

x>>31

00000000 00000000

L=

00000000 00000000

O0x1

00000000 00000000

00000000 00000001

(x>>31) & Ox1

00000000 00000000

00000000 00000000

X

10000001 00000010

——

00000011 00000100

x>>31

11111111 11111111

=

11111111 11111111

O0x1

00000000 00000000

00000000 00000001

(x>>31) & Ox1

00000000 00000000

00000000 00000001

CSE 351, Spring 2024
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Using Shifts and Masks

+ Conditionals as Boolean expressions
" Forint x, whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 111117111 1111121171 11111111
Ix 00000000 00000000 00000000 00000000
1x<<31 00000000 00000000 00000000 00000000
('x<<31)>>31 |00000000 00000000 0OOOOOOO O0OOOOO0OO

= Can use in place of conditional:
- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?y:z;
«a=(((!!'x<<31)>>31)6&y) | (((!x<<31)>>31)&z);

40



