WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Integers li
CSE 351 Spring 2024

Instructor:

Elba Garza

Teaching Assistants:

Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki

Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson

Hamsa Shankar

WA/ UNIVERSITY of WASHINGTON LO5: Integers Ii

CSE 351, Spring 2024

Announcements, Reminders

<+ HW3 due tonight, HW4 due Friday (05 Apr)
% Lab 1a due Monday (8 Apr)

= Use ptestanddlc.py to check your solution for correctness (on the CSE Linux
environment)

= Submit pointer.cand lablAsynthesis.txt to Gradescope

- Make sure you pass the File and Compilation Check — all the correct files were found and there
were no compilation or runtime errors

+» Lab 1b releases tomorrow, due next Monday (15 Apr)

= Bit manipulation on a custom encoding scheme

L)

" Bonus slides at the end of today’s lecture have examples for you to look at &

WA/ UNIVERSITY of WASHINGTON LO5: Integers Il

Reading Review

+» Terminology:

UMin, UMax, TMin, TMax

Type casting: implicit vs. explicit

Integer extension: zero extension vs. sign extension
Modular arithmetic and arithmetic overflow

Bit shifting: left shift, logical right shift, arithmetic right shift

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE 351, Spring 2024

Review Questions

+ What is the value and encoding of Tmin (minimum signed value)
for a fictional 7-bit wide integer data type?

| 0 00 000
2"<|-¢A | A A
+» Forunsigned char uc = G)xBB,,what are the produced data for the
cast (unsigned short)uc? Liso botes = shoet!
ﬂx&? —> x EJOLK_%?

+» What is the result of the following expressions?

" (signed char)uc >> 2 {"1/'705 /071 00/—-—-"" Ob 1110 oo
" (unsigned char)uc >> 3@)3(6“ [XECJ

000
/05 10/ 07T —> Ob 000/0110
9% o gk s

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Why Does Two’s Complement Work?

+ For all representable positive integers x, we theoretically want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

We want the additive inverse!

= What are the 8-bit negative encodings for the following? g
I 7 /
00000001¢” 00000010 <~ 11000011
+ PPV D0D + PPV D0D + P00V 0D

oooooooow
617

00000000 R 7 00000000 ﬁ 7

-— -

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Why Does Two’s Complement Work?

+ For all representable positive integers x, we theoretically want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

= What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 11111111 + 11111110 + 00111101
100000000 100000000 100000000

/

janore Phis; this overFb~ i —
consdgence of mobing fuot complerent [These are the bitwise complement plus 1!J

work! Plos, the fimited nomber -Xx == ~x + 1
of bty doesn’t help... 6

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Integers

+» Binary representation of integers

= Unsigned and signed
= CastinginC

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Values To Remember (Review)

+ Unsigned Values +» Two’s Complement Values
= UMin = 0b00..0 = TMin = 0b10..0
= m = —ZW_H
= UMax = O0bll..1 = TMax = 0b01..1
=,2W—1' = |2 1]
| = -1 = 0bll..l

+~ Example: Values forw = 64

UMax 18,446,744,073,709,551,615 FE FET EFF IR FE EF FF FE //A// 75/

TMax 9,223,372,036,854,775,807 YE EFE EF FF RFF EFR EFF FF 24 C
TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00 ﬂ"z?e
-1 -1 FE FET FF FF FE EF FF FE /A 2!

0 0O 00 00 00 00 00 00 00 00 WA 0%

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON LO5: Integers Il

Signed/Unsigned Conversion Visualized

+» Two’s Complement — Unsigned

®
" Ordering Inversion °
= Negative — Big Positive
. ®
4-bit "~ TMax ®
Example:
Oookl
PN\O‘G 2’s Complement 0 PY
gocV P Range| 1111
PPN
_ 10 @ —2
M\‘N O
2
— TMin 1000

UMax
UMax -1

TMax +1
TMax

0/UMin

Unsigned
Range

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

In C: Signed vs. Unsigned (Review)

«» Casting Ity all sbwt
= Bits are unchanged, just interpreted differently! « /‘n/e@;/;.,i encoa/fyf./
- int tx, ty; // Lﬁjw/ 5(7 dlf/éd//

-« unsigned int ux, uy;
" Explicit casting: [/M/We/ over implei# “J//"-Jr--)
« tx =(int) ux;
+ uy = (unsigned int) ty;
= Implicit casting can occur during assignments or function calls:

.« tX = ux; Ao tHher exemple:
. uy = ty; Signed che ez =),

Uﬂ&"/mea’ ch UC = SC; // ve efw/ fo
-

755, rov! ‘/‘

10

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Casting Surprises (Review) '

+ Integer literals (constants) ®

= By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation

= Use “U” (or “u”) suffix to explicitly force unsigned

. Examples: 0U, 4294967259u // /o /e;féf[’/ V' pobend 0w
I Uging soPhx éﬁ&f naiking 12 ’."'[g//o“f
[a$ dnfﬁnez/ : ﬂod/é fechnicdl, o/o/:ona/.

J

= When you mixed unsigned and signed in a single expression, then signed values
are implicitly cast to unsigned /. €. unf,'/m/ hay /oxg;g/engg /
" |Including comparison operators <, >, ==, <=, >= —

+ Expression Evaluation

"= Yeah, no idea why. Thanks, C.

11

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Integers

+ Binary representation of integers

= Unsigned and signed
= Castingin C

+» Consequences of finite width representations
= Sign extension, overflow

+ Shifting and arithmetic operations

12

WA/ UNIVERSITY of WASHINGTON

LOS: Integers Il

CSE 351, Spring 2024

Sign Extension (Review)

+» Task: Given a w-bit signed integer X, convert it to wt+k-bit signed integer
X" with the same value

%+ Rule: Add k copies of sign bit /@;f;ﬂ/[&] p‘jh /S Main /mg/,)
= Let x; be the i-th digit of X in binary

r
o X -_— xw_l, ---,xw_l,‘xw_l, xw_z, ---,xl’ xO’
|

k copies of MISB original X X - ® l/V. >

=X M l l l l l
0b1000 = '810 X' 'YX X0

Male /1S bt 0411000 = =& k= w g

Valve does ot chasge

13

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Two’s Complement Arithmetic

+» The same addition procedure works for both unsigned and
two’s complement integers
= Simplifies hardware: only one algorithm for addition)

= Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum, then modulo by 2%

Fx: 01111
L /
[0000

/

dl'.fddo’/ Vi
Modo o

A

—m

14

WA/ UNIVERSITY of WASHINGTON

LOS: Integers Il

Arithmetic Overflow (Review)

/\}Aﬁ/ /L/0"15/ d‘ﬂ/

« What happens a calculation produces a

result that can’t be represented in the

current encoding scheme?

" |nteger range limited by fixed width

= Can occur in both the positive and negative

directions

TMex . .
« Well... Cand Java ignore overflow exceptions

T;Im'\

BitS/‘bLJnsigned Signed
0000 OUma O
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 (7 %
1000 8 8& |
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 | -2
1111 | (15 -1

= You end up with a bad value in your program and
get no warning/indication... oops!

IF we add | h

'Mi.l; if it overfha?

Ue”:lj&; bHut if takes JS Yo O.
Good overfha! U

15

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Overflow: Unsignhed

= Addition: drop carry bit (wrong by —2N) \ww : Op\;n
15 1111 1; —-—> AR
+ 2 + 0010
T Z0001 13
’

: 0000
0001
0010

1111
1110
1101

/]a%da/(/z): 1 12 {1100 0011 | 3
‘ . N Unsigned
+ Subtraction: borrow (wrong by +2%) 11\ 1011 neiene 0100 | 4
1 10001 1010 0101
_ 5 _ 0010 10\ 1001 0110 >

1000 0111

;{ 1111
15 ~

Ac/ua/{j

Over/Under by +2N because of Here, ZL/:/A
modular arithmetic

16

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Overflow: Two’s Complement

+ Addition: (+) + (+) = (—) result?

0 0110 _q 0
+ 3 + 0011 -2

1111 0000

| 7 — 1101 0010
AC‘}(M// - 7 N —4 1100 Two’s 0011 * 3
» Subtraction: (—) + (=) = (+)? | 1011 Complement . .
_ +
iy 1001 1010
-3 - 0011 AN "
— 1000 ; 0111 _“ ¢
-1) 0110 \ " 7//7

6
[For signed: overflow happened if operands]

have same sign and result’s sign is different .

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Integers
Lﬁfvl Fime: 5// /MJ/(J.

« Binary representation of integers
y p g /Uou)/ /oo[fnj ba6/<, we coold heve

= Unsigned and signed isolaked the siit bits via bt
= Casting in C ﬁ”fﬁj instead -
+» Consequences of finite width representations oToli]o]1]o] 1]o
= Sign extension, overflow ot Vel .
+» Shifting and arithmetic operations W cod hess Igicalh shitted inshed

|£O 0 0lo 0,’ ol. / /Va/uc

vi Jc/
Suit 0 6/7‘5.

/
o

2
T/)ey e S oppa;e:/ fo

be ’,ﬁ//fﬂ] o/ "

18

WA/ UNIVERSITY of WASHINGTON

Shift Operations (Review)

67’ me
£ mm/o/w .

0010 0010
0001 0000
0000 1000
0000 1000

|
L//Ieﬁ,

arithmetic:

LOS: Integers Il

+ Left shift (x<<n) bit vector x by n positions
= Fill with @’s on right
+ Right shift (x>>n) bit-vector x by n positions

" For unsigned values: Logical shift—Fill with o’s on left

alnay

s

logical:

arithmetic:

Always: Throw away (drop) extra bits that “fall off” either end

" For signed values: Arithmetic shift—Replicate most significant bit on left.

Maintains sign of x! Exactly like we did with sign extension!

Ex: O0x22 Ex: OxA2

1010 0010
S

0001 0000

0010 1000

1110 1000

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON LO5: Integers Ii CSE 351, Spring 2024

Shift Operations (Review)

+» Arithmetic:
= |eft shift (x<<n) is equivalent to multiply by 2"
= Right shift (x>>n) is equivalent to divide by 2"
= Compiler Hack: Shifting is faster than general multiply and divide operations!

«» Notes: 03 y
ol o
= Shifts by n<0 or n=>w (w is bit width of x) are undefined of: Uﬁ \S\’“M ‘ Avko"’
0
" In C: behavior of >> is determined by the compiler 6 ¢ 10"0

 In gcc / clang, depends on data type of x (signed/unsigned)
" InJava: logical shiftis >>> and arithmetic shift is >>

20

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Left Shifting 8-bit Example

+» No difference in left shift operation for unsigned and signed numbers
(just manipulates bits)

= Difference comes during interpretation: x*297? (I/. aloc//eaf m//d)
Signed Unsigned No Overflow
X = 25; 00011001 = 25 25 25

L1=x<<2; 00[01100100 100 100 100

— \
L2=x<<L3; OOO_I‘IOOIOOO =%—56 200 200

signed overflow

I.3=x<<4: 000110010000 = =112 144 400

Lo,f/’ Jome
dot:! ———>| unsigned overflow
gl

21

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Right Shifting 8-bit Examples

<~ Reminder: C operator >> does logical shift on unsigned values and
arithmetic shift on signed values

= Logical Shift: x/2°? (Tn & pechiok wodd)
Unsigned No Rounding

xu = 240u; 11110000 = 240 240

Rlu=xu>>3; 00011110000 = 30 30

R2u=xu>>5; 0000011110000

'/ 7.57

| rounding (down) | 7

22

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Right Shifting 8-bit Examples

<~ Reminder: C operator >> does logical shift on unsigned values and
arithmetic shift on signed values
= Arithmetic Shift: x/27?

Signhed No Rounding
xs = -16; 11110000 = -16 -16
Rls=xs>>3; 11111110000 = -2 -2
R2s=xs>>5; 1111111110000 = -1 -0.5
rounding (down)

23

WA/ UNIVERSITY of WASHINGTON LO5: Integers Ii CSE 351, Spring 2024

Summary

+ Sign and unsignhed variables in C

= Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we convert/cast between sign
and unsigned numbers
- Type of variables affects behavior of operators (shifting, comparison)

L)

+» We can only represent so many numbers in w bits
= When we exceed the limits, arithmetic overflow occurs
= Sign extension tries to preserve value when expanding
+ Shifting is a useful bitwise operator
= Right shifting can be arithmetic (sign) or logical (0)
= Can be used in multiplication with constant or bit masking

24

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Undefined Behavior in C

+» How much undefined behavior have we talked about in just
the past few lectures?

= Shifting by more than size of type el i

SECOND EDITION

= No bounds checking in arrays

® Pointer nonsense

= Mystery data in unassigned QE
variables PROGRAMMII

) LANGUAGE _ |
= _..and there will be more! & Sarhisibadlboy/can hold somuch

B\ itieTined behaviour iniiv

What does this tell us about the values
that were embedded in C?

25

WA/ UNIVERSITY of WASHINGTON LO5: Integers Il

CSE 351, Spring 2024

C language (1978)

+» Developed beginning in 1971, “standardized” in 1978

= Goal of writing Unix (precursor to Linux, macOS and others)

= Different time— faced with significant performance and resource limits
+ Explicit Goals:
= Portability, performance (better than B, it’s C!)

26

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Your Perspectives on C

< What have you noticed about the way that C works?

= What does it make easy?

¢ Vet/(? aII'JJI’G/'E /"’el"o/j /mmpu/a//@/)

¢ 70/'4/ Jonﬁ/o/ 0/ /}wmoy J’/Mt.’
= What does it make difficult?

o Wit sale code..
' [//,,',71 ,/‘/
' /0/4 ter Sorce /J

27

WA/ UNIVERSITY of WASHINGTON LO5: Integers Il

Perspectives on C

+ Minimalist

CSE 351, Spring 2024

= Relatively small, can be described in a small space, and learned quickly (or so it’s

claimed)
= “Only the bare essentials”
+» Rugged
" Close to the hardware
= Shows what’s really happening
+ Eliteness

= “Real programmers can do pointer arithmetic!”
= Quickly slides into a “Back in my day!” situation...

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

28

WA/ UNIVERSITY of WASHINGTON LO5: Integers Ii

Consequences of C

+» “Cis good for two things: being beautiful

and creating catastrophic Odays in
memory management.” - Link to Medium Post

+» “We shape our tools, and thereafter, our
tools shape us.” — Jjohn culkin, 1967

«» White House says no to C/C++! Is Joe
Biden a rustacean?

CSE 351, Spring 2024

O jamigarner
"cat", short for "C++ Analysis Tool", is a command line utility designed for
analyzing a C++ program and displaying which lines of code are

potentially unsafe

Example:

]
) maln.cpp

int buf([10];
buf[12] = 0;

»]

Also applies to C, of course.

32

https://medium.com/message/everything-is-broken-81e5f33a24e1
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://rustacean.net/

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Maybe Cis like... cilantro?

-
et B gy

A\f G La //na’ L lwe cilinkn L
» Maybe you love it! S Y - ~uS

» Maybe you hate it!

» Maybe your feelings are
more complicated than

that!

4

D)

- We're not trying to force you one way or another, we only ask that you
try to appreciate both its benefits and its shortcomings.

L)

4

% Mainly using C as a tool to understand computers. ﬁ

33

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

+ Extract the 2"d most significant byte of an int
+ Extract the sign bit of a signed int

+ Conditionals as Boolean expressions

34

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Practice Question 1

+» Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the
following expression evaluate to?
" UMin =0, UMax = 255, TMin =-128, TMax =127

+ 127 < (signed char) 128u

35

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Practice Questions 2

+» Assuming 8-bit integers:
=" Ox27 =39 (signed) =39 (unsigned)
= OxD9 =-39 (signed) = 217 (unsigned)
" OX7TF =127 (signed) = 127 (unsigned)
=" Ox81 =-127 (signed) = 129 (unsigned)

+ For the following additions, did signed and/or unsigned overflow occur?
= Ox27 + Ox81

e o

yfmz/ /27 + [3‘7)

No .,m’,jna/ m/c/ﬁod

Unsiped 127, + 217 = 3%

o Saned JG//%O
! 7 ° UﬂJl'fﬂCJ ['s) I/C/ﬂ/Ocs -,/./ 36

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Exploration Questions

For the following expressions, find a value of signed char x,
if there exists one, that makes the expression True.

+» Assume we are using 8-bit arithmetic:

" x == (unsigned char) x Efffg.'&r ﬁi}v)écﬁl‘im
" x >= 1280 el \/x, 0
T e A I s
X T X @ x= 0b00-..00 =0
- Hint: there are two solutions XSOI G) x= %1000 = ~/28
A'ﬁ x whee 7 MSBS

" (x < 1280U) && (x > 0x3F) \ are 0b0)

37

WA/ UNIVERSITY of WASHINGTON

LOS: Integers Il

Using Shifts and Masks

+ Extract the 2" most significant byte of an int:

" First shift, then mask: (x>>16) & OxFF
X 00000001{00000010/00000011 00000100
x>>16 00000000 00000000 00000001100000010
OxXFF 00000000 00000000 00000000 11111111

(x>>16) & OxXFF

00000000 00000000 00000000 00000010

= Or first mask, then shift: (x & OxFF0000)>>16

x 00000001 00000010 00000011 00000100
0xFF0000 00000000 11111111 00000000 00000000

x & 0xFF0000 [00000000/00000010/00000000 00000000
(x&0xFF0000)>>16 00000000 00000000 moooooom

CSE 351, Spring 2024

38

WA/ UNIVERSITY of WASHINGTON

LOS: Integers Il

Using Shifts and Masks

+» Extract the sign bit of a signed int:
® First shift, then mask: (x>>31) & 0Ox1

- Assuming arithmetic shift here, but this works in either case

- Need mask to clear 1s possibly shifted in

X

OD000001 00000010

00000011 00000100

—

x>>31

00000000 00000000

L=

00000000 00000000

O0x1

00000000 00000000

00000000 00000001

(x>>31) & Ox1

00000000 00000000

00000000 00000000

X

10000001 00000010

——

00000011 00000100

x>>31

11111111 11111111

=

11111111 11111111

O0x1

00000000 00000000

00000000 00000001

(x>>31) & Ox1

00000000 00000000

00000000 00000001

CSE 351, Spring 2024

39

WA/ UNIVERSITY of WASHINGTON LO5: Integers || CSE 351, Spring 2024

Using Shifts and Masks

+ Conditionals as Boolean expressions
" Forint x, whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 111117111 1111121171 11111111
Ix 00000000 00000000 00000000 00000000
1x<<31 00000000 00000000 00000000 00000000
('x<<31)>>31 |00000000 00000000 0OOOOOOO O0OOOOO0OO

= Can use in place of conditional:
- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?y:z;
«a=(((!!'x<<31)>>31)6&y) | (((!x<<31)>>31)&z);

40

