CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

Data lll & Integers |
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker

Adithi Raghavan

Aman Mohammed
Brenden Page

Celestine Buendia

Chloe Fong

Claire Wang

Hamsa Shankar

Maggie Jiang
Malak Zaki
Naama Amiel
Nikolas McNamee
Shananda Dokka
Stephen Ying

Will Robertson

The security of
the most popular

Linux distros on Earth
-

-

N

i

4c]

"

One software
engineer

who noticed
500ms of latency

L

=

AP

—

https://www.openwall.com/lists/oss-security/2024/03/29/4

https://www.openwall.com/lists/oss-security/2024/03/29/4

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Announcements, Reminders

+» HW2 and Lab 0 due Today! (As was RD4 and LC3, btw.)

+» HW3 due Wednesday (03 Apr), HW4 due Friday (05 Apr)

+ Elba’s Office Hours in CSE 438
" Tuesdays 11 AM —-12 PM
®" Wednesdays 4:30 PM —5:30 PM
+» Lab 1a released

= Some later functions require bit shifting, covered in LO5

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Announcements, Reminders

«» Lab 1a released

" New Workflow:
1)Edit pointer.c

2)Run the Makefile (make clean followed by make) and check for compiler
errors & warnings

3)Run ptest (. /ptest) and check for correct behavior
4)Run rule/syntax checker (python3 dlc.py) and check output

" Due Monday (08 Apr) via Gradescope, will overlap a bit with Lab 1b
- We grade just your last submission
- Don’t wait until the last minute to submit — need to check autograder output

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers |

Lab Synthesis Questions

+ All subsequent labs (after Lab 0) have a “synthesis question” portion
= Can be found on the lab specs and are intended to be done after you finish the lab
= You will type up your responses in a . txt file for submission on Gradescope

= These will be graded “by hand” (read by TAs)

+ Intended to check your understand of what you should have learned

from the lab
= Also great practice for short answer questions on the exams

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

Reading Review

+» Terminology:

= Bitwise operators: AND (&), OR (|), XOR (*), NOT(~)

Logical operators: AND (&&), OR (| |), NOT (!)
Short-circuit evaluation

Unsigned integers

Signed integers (Two’s Complement)

WA/ UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

CSE351, Spring 2024

Review Questions

+» Compute the result of the following expressions for
char ¢ = 0x81;

’ /5 /000 00O/
ccrc (e00 4 1000 dool
00 000
" ~C & OXA9 — pooo 0
frue Fyue \)
=c || ox80 Dx 0l 0//
'16;5 /

Ox 0 00 ’, o 7000
« Compute the value of signed char sc = OxFO;
(using Two’s Complement) et
@ g //i,o plos one” @ /I/I 0000

~gl = 003-0 ///,/ %/gc;-ﬂ Q -2 +Z +Z+Z +0+...+0

000/ ©c00

WA/ UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

CSE351, Spring 2024

Bitmasks

+ Typically binary bitwise operators (&, |, *) are used with one operand

being the “input” and other operand being a specially-chosen bitmask
(or mask) that performs a desired operation

» Motivation: Operations for a bit b (answer with @, 1, b, or b):

pb&0=_0 "zew 0ot b 0= _4 bro=_0
0&o = 0 O/lv=-p 010-0
| 20 =0 I [=1 , 0=l ~
b&l=_4 bl1=_/ alZ1¢/" br1=_4
O081=0 0/ = A=/

[1=1 01 oy
| &1 =/ 11 =1 /] A) =0 r

WA/ UNIVERSITY of WASHINGTON

LO4: Data lll & Integers |

CSE351, Spring 2024

Bitmasks
+ Typically binary bitwise operators (&, |, *) are used with one operand

being the “input” and other operand being a specially-chosen bitmask (or
mask) that performs a desired operation

+~ Example: b|0 =b, b|1 =1

01010101 <« input
I 11110000 <« bitmask
11110101

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Numerical Encoding Design Example

+» Encode a standard deck of playing cards

= 52 cards in 4 suits

+» Operations to implement:

= Which is the higher value card?
= Are they the same suit?

™ 2 3 (e d%s S 1&*& 2-1.*4- i% & Qo

& & R R ool Il

LN R R Y R R KR 2 a2

F. 'H t-? A So 3o [Jaa2aaRaalanilon|lonslen
Irst: How to represent: o . o [aa %] s% 202"
ol ofoel veol vl vel ool ool o

A 29 (39 [ivw|ivw|ive Zv'v Ev.v ve @v,v

v v v [vo|ve|[ve|%[|YY

N EAAEXS

9 2l &G Al oAl &aj] &l &afl Aol AT

% 20 I3 e [fe e300 (000 Zo‘o §0.¢ 10 0 [Deye

¢ ¢ N KRN RN KX welee

L R RN RN NN EX I ERE KLY

WA/ UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

Representations and Fields

Binary encoding of all 52 cards — only 6 bits
needed

= 26 =64 > 752

= Fits in one byte

= How can we make value and suit comparisons
easier?

CSE351, Spring 2024

low-order 6 bits of a byte

Binary Suit & Value
000000 Ace of Clubs
000001 Ace of Diamonds
000010 Ace of Hearts
000011 Ace of Spades
110001 King of Diamonds
110010 King of Hearts
110011 King of Spades

10

WA/ UNIVERSITY of WASHINGTON

LO4: Data lll & Integers | CSE351, Spring 2024

Representations and Fields

Separate binary encodings of suit (2 bits) and value (4 bits)
= Still fits in one byte, and easier to do comparisons! &

- value
sult
(00
¢ |01 K Q) .. 3 2 A
' 10 1101(10111(1010 0011 |0010| 0001
® 11

11

WA/ UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

Compare Card Suits

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

cardZ2 = hand[1l];

if (same suit(cardl, card2)) { ... }

#define SUIT MASK 0x30 // in binary: 0b00110000

int same suit (char cardl, char card2) {
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

SUIT MASK = 0x30 =|0]0|1(1]0(0|0]|O

suit value

CSE351, Spring 2024

12

WA/ UNIVERSITY of WASHINGTON

Compare Card Suits

LO4: Data lll & Integers |

CSE351, Spring 2024

#define SUIT MASK

}

0x30

int same suit (char cardl, char card2) {

return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

)
L 2
* X
@
3

L 2
~e
3
Ll
-

b}

0| SUIT MASK

0| zevo'd out!

ZszQ/ aufﬁ'

13

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Compare Card Suits: Equivalent Technique

#define SUIT MASK 0x30

int same suit (char cardl, char card2) {
// Equivalent computation

return (cardl & SUIT MASK) == (card2 & SUIT MASK);
}
i e o=
0[{0jJ0|1|0|0|1]0 0010|2111 |1|0]|1
& ' — &
0{0j1]1|0|0|0]|O0 SUIT MASK 0{011]1|0|0|0]|O0

[X==V GQUivalent to ! (XAY) /O olololololol1

14

WA/ UNIVERSITY of WASHINGTON L04: Data Ill & Integers |

Compare Card Values

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

cardZ2 = hand[1l];

if (greater value(cardl, card2)) { ... }

#define VALUE MASK OxOF

int greater value(char cardl, char card2) ({
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned 1int) (card2 & VALUE MASK)) ;

VALUE_MASK = Ox0F =[0]0|/0|0]1]|1|1|1

suit value

CSE351, Spring 2024

15

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Compare Card Values

#define VALUE MASK OxOF

int greater value(char cardl, char card2) ({
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned 1int) (card2 & VALUE MASK)) ;

‘e o
0(0(1{0]0]0(1]0 010111011]1(0]|1
& *: = &
0(0(0(0y1(1(1|1| VALUE MASK |0|0|0|OJ1|1|1]|1

0(0]0[010|0[1]0 0({0|10j011]1(0]1
Ze/O,J O()*o/ 210 > 1310 ZC/OIJ OU*/

O (false)

16

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

The Hardware/Software Interface

+ Topic Group 1: Data T~

Even more applications

= Memory, Data, Integers, Floating Point, : :
ArrayS, Structs Applications

Programming Languages
& Libraries

Operating System

| Hardware I

Transistors, Gates, Digital Systems

Physics

+» How do we store information for other parts of the house of computing
to access?
= How do we represent data and what limitations exist?
= What design decisions and priorities went into these encodings?

17

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Encoding Integers

+» The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
" signed — both negatives and non-negatives

+» We cannot represent all integers with w bits!
= Only 2% distinct bit patterns

" Unsigned values: 0..2"-1
= Signed values (2’s C): —2w-1 2w-lg

+» Example: 8-bit integers (e.g., char in C)

-00 < +00

—128 0 +128 4256
—28-1 0 +2871 +2°

18

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Unsigned Integers (Review)

+» Unsigned values follow the standard base 2 system:
b7b6b5b4b3b2b1b0 — b727 —+ b626 + .-+ b121 —+ bOZO

/q // [10 7% oS M/&// \/_’)

19

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

integers!

Sign and Magnitude [Not used in practice for]

+ Designate the high-order bit (MSB) as the “sign bit”
" sign=0: positive numbers; because the sign bitis 0
- e.g.0x7F = 01111111, is non-negative (+127,,)
" sign=1: negative numbers
- e.g. Ox85 =_10@@91@12 is negative (-54)

I ————)

+ Benefits:
= Using MSB as sign bit matches positive numbers with unsigned!

= All zeros encoding is still =0

+» Some Examples (8 bits):

" QX000 = 00V, is positive! }n
0 C/Ca/...

" Ox80 = 10000000, is negative!

20

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Sign and Magnitude Not used in practice for

integers!

+» MSB is the sign bit, rest of the bits are magnitude

« Drawbacks?
~

15

14

1111 0000

1111 0000

13 1110 0001) 1110 0001 + 2
1101 0010 1101 0010
12 3 + 3
1100 Unsigned 0011 1100 Sign and 0011
Magnitude
111011 0100 | 4 0100 [, 4

1010
1001
1000

0101
0110
0111

21

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Sign and Magnitude Not used in practice for

integers!

+» MSB is the sign bit, rest of the bits are magnitude

+» Drawbacks: ///
= Two representations of 0 (bad for checking equality) / o
+ 0

1101
1100

Sign and
5 1011 Magnitude 0100

22

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Sign and Magnitude Not used in practice for

integers!

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)

" Arithmetic is cumbersome —7 +0
- Example: 4-3 = 4+ (-3) -6 1111 0000

_5 / 1110 0001 \+ 2
41 0100 4| 0100 //f 1101 0010
— — _ -4 + 3
o) ooy
- Magnitude
, X _3\1011 € 0100 [, 4

1010
1001
1000

Negatives “increment” in wrong direction!

0111

23

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works /

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers |

Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate —0

+» MSB still indicates sign!

= This is why we represent one
more negative than positive
number (-2V71 to 2V-1 —1)

1100
_ | 1011

1101

1010

1111
1110

0000

Two’s
Complement

1001

1000 0111

0001

CSE351, Spring 2024

0010
0011

25

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers |

Two’s Complement Negatives (Review)

+» Accomplished with one neat mathematical trick!

b1 has weight —2W~1, other bits have usual weights +2!

= 4-bit Examples:

- 1010, unsigned: -2

1%23+ 0%22+ 1%21 4 0%20 = 10 @ G 3

- 1010, two’s complement:
1%23 4 0%22 + 1%214+ 0*20=—6 —4

1111 0000
1110 0001
1101 0010
1100 Two's 0011

_c\1011 Complement

= -1 represented as:
1111, =-234(23-1)

- MSB makes it super negative, add up
all the other bits to get back up to -1

1010
1001
1000

0101
0110
0111

26

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Polling Question

+ Take the 4-bit number encodingx = 0bl011
+» Which of the following numbers is NOT a valid interpretation of x using

allEe

any of the number representation schemes discussed today?

= Unsigned, Sign and Magnitude, Two’s Complement

" Vote in Ed Lessons o Twot [ompknm*-'
A2 | b 1011

B. -5 — fulr comp/ememl 2% 0¢2%2°= 8

C. 114— onsigned ' s jm,

D. -3 (———&'ﬁnqﬁmﬁmﬁ‘w@ z +o+Z+Z s

,Z'. We’'re lost... Sign + Magni tude:

&ede/-’ 0b 1101 —97;:’; 3=>-3

27

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Two’s Complement is Great (Review)

Roughly same number of (+) and (—) numbers

L)

0‘0

Positive number encodings match unsigned

L)

0‘0

L)

*

Single zero
All zeros encoding =0

L)

0‘0

1111
1110
1101

0000
0001
0010

L)

*

» Simple negation procedure:

" Get negative representation =% [1100 TWo's o011 |3
of any integer by taking _ o\ 1011 Complement 5,09 v
bitwise complement and 1010 0101
then adding one! -6\ 1001 0110 /+5
(~x + 1 == -x) 1000 0111

28

WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers |

CSE351, Spring 2024

Summary

+ Bit-level operators allow for fine-grained manipulations of data

= Bitwise AND (&), OR (|), and NOT (~) different than logical AND (&&), OR (] |), and
NOT (!)

= Especially useful with bit masks
+ Choice of encoding scheme is important

® Tradeoffs based on size requirements and desired operations

+ Integers represented using unsigned and two’s complement
representations

= Limited by fixed bit width

= We'll examine arithmetic operations next lecture

29

