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Announcements, Reminders

+» HW2 and Lab 0 due Today! (As was RD4 and LC3, btw.)

+» HW3 due Wednesday (03 Apr), HW4 due Friday (05 Apr)

+ Elba’s Office Hours in CSE 438
" Tuesdays 11 AM —-12 PM
®" Wednesdays 4:30 PM —5:30 PM
+» Lab 1a released

= Some later functions require bit shifting, covered in LO5
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Announcements, Reminders

«» Lab 1a released

" New Workflow:
1)Edit pointer.c

2)Run the Makefile (make clean followed by make) and check for compiler
errors & warnings

3)Run ptest (. /ptest) and check for correct behavior
4)Run rule/syntax checker (python3 dlc.py) and check output

" Due Monday (08 Apr) via Gradescope, will overlap a bit with Lab 1b
- We grade just your last submission
- Don’t wait until the last minute to submit — need to check autograder output
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Lab Synthesis Questions

+ All subsequent labs (after Lab 0) have a “synthesis question” portion
= Can be found on the lab specs and are intended to be done after you finish the lab
= You will type up your responses in a . txt file for submission on Gradescope

= These will be graded “by hand” (read by TAs)

+ Intended to check your understand of what you should have learned

from the lab
= Also great practice for short answer questions on the exams
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Reading Review

+» Terminology:

= Bitwise operators: AND (&), OR (|), XOR (*), NOT(~)

Logical operators: AND (&&), OR (| |), NOT (!)
Short-circuit evaluation

Unsigned integers

Signed integers (Two’s Complement)
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Review Questions

+» Compute the result of the following expressions for
char ¢ = 0x81;
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Bitmasks

+ Typically binary bitwise operators (&, |, *) are used with one operand

being the “input” and other operand being a specially-chosen bitmask
(or mask) that performs a desired operation

» Motivation: Operations for a bit b (answer with @, 1, b, or b):

pb&0=_0 "zew 0ot b 0= _4 bro=_0
0&o = 0 O/lv=-p 010-0
| 20 =0 I [ =1 , 0=l ~
b&l=_4 bl1=_/ alZ1¢/" br1=_4
O081=0 0/ = A=/

[1=1 01 oy
| &1 =/ 11 =1 /] A) =0 r
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Bitmasks
+ Typically binary bitwise operators (&, |, *) are used with one operand

being the “input” and other operand being a specially-chosen bitmask (or
mask) that performs a desired operation

+~ Example: b|0 =b, b|1 =1

01010101 <« input
I 11110000 <« bitmask
11110101
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Numerical Encoding Design Example

+» Encode a standard deck of playing cards

= 52 cards in 4 suits

+» Operations to implement:

= Which is the higher value card?
= Are they the same suit?
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Representations and Fields

Binary encoding of all 52 cards — only 6 bits
needed

= 26 =64 > 752

= Fits in one byte

= How can we make value and suit comparisons
easier?

CSE351, Spring 2024

low-order 6 bits of a byte

Binary Suit & Value
000000 Ace of Clubs
000001 Ace of Diamonds
000010 Ace of Hearts
000011 Ace of Spades
110001 King of Diamonds
110010 King of Hearts
110011 King of Spades

10
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Representations and Fields

Separate binary encodings of suit (2 bits) and value (4 bits)
= Still fits in one byte, and easier to do comparisons! &

- value
sult
(00
¢ |01 K Q ) .. 3 2 A
' 10 1101(10111(1010 0011 |0010| 0001
® 11

11
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Compare Card Suits

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

cardZ2 = hand[1l];

if ( same suit(cardl, card2) ) { ... }

#define SUIT MASK 0x30 // in binary: 0b00110000

int same suit (char cardl, char card2) {
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

SUIT MASK = 0x30 =|0]0|1(1]0(0|0]|O

suit value

CSE351, Spring 2024
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Compare Card Suits
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#define SUIT MASK

}

0x30

int same suit (char cardl, char card2) {

return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

)
L 2
* X
@
3

L 2
~e
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b}

0| SUIT MASK

0| zevo'd out!

ZszQ/ aufﬁ'
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Compare Card Suits: Equivalent Technique

#define SUIT MASK 0x30

int same suit (char cardl, char card2) {
// Equivalent computation

return (cardl & SUIT MASK) == (card2 & SUIT MASK);
}
i e o=
0[{0jJ0|1|0|0|1]0 0010|2111 |1|0]|1
& ' — &
0{0j1]1|0|0|0]|O0 SUIT MASK 0{011]1|0|0|0]|O0

[ X==V GQUivalent to ! (XAY) /O olololololol1

14
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Compare Card Values

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

cardZ2 = hand[1l];

if ( greater value(cardl, card2) ) { ... }

#define VALUE MASK OxOF

int greater value(char cardl, char card2) ({
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned 1int) (card2 & VALUE MASK)) ;

VALUE_MASK = Ox0F =[0]0|/0|0]1]|1|1|1

suit value

CSE351, Spring 2024
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Compare Card Values

#define VALUE MASK OxOF

int greater value(char cardl, char card2) ({
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned 1int) (card2 & VALUE MASK)) ;

‘e o
0(0(1{0]0]0(1]0 010111011 ]1(0]|1
& *: = &
0(0(0(0y1(1(1|1| VALUE MASK |0|0|0|OJ1|1|1]|1

0(0]0[010|0[1]0 0({0|10j011]1(0]1
Ze/O,J O()*o/ 210 > 1310 ZC/OIJ OU*/

O (false)
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The Hardware/Software Interface

+ Topic Group 1: Data T~

Even more applications

= Memory, Data, Integers, Floating Point, : :
ArrayS, Structs Applications

Programming Languages
& Libraries

Operating System

| Hardware I

Transistors, Gates, Digital Systems

Physics

+» How do we store information for other parts of the house of computing
to access?
= How do we represent data and what limitations exist?
= What design decisions and priorities went into these encodings?

17
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Encoding Integers

+» The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
" signed — both negatives and non-negatives

+» We cannot represent all integers with w bits!
= Only 2% distinct bit patterns

" Unsigned values: 0..2"-1
= Signed values (2’s C): —2w-1 2w-lg

+» Example: 8-bit integers (e.g., char in C)

-00 < +00

—128 0 +128 4256
—28-1 0 +2871 +2°

18
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Unsigned Integers (Review)

+» Unsigned values follow the standard base 2 system:
b7b6b5b4b3b2b1b0 — b727 —+ b626 + .-+ b121 —+ bOZO

/q // [ 10 7% oS M/&// \/_’)

19
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integers!

Sign and Magnitude [Not used in practice for]

+ Designate the high-order bit (MSB) as the “sign bit”
" sign=0: positive numbers; because the sign bitis 0
- e.g.0x7F = 01111111, is non-negative (+127,,)
" sign=1: negative numbers
- e.g. Ox85 =_10@@91@12 is negative (-54)

I ————)

+ Benefits:
= Using MSB as sign bit matches positive numbers with unsigned!

= All zeros encoding is still =0

+» Some Examples (8 bits):

" QX000 = 00V, is positive! }n
0 C/Ca/...

" Ox80 = 10000000, is negative!

20
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Sign and Magnitude Not used in practice for

integers!

+» MSB is the sign bit, rest of the bits are magnitude

« Drawbacks?
~

15

14

1111 0000

1111 0000

13 1110 0001 ) 1110 0001 + 2
1101 0010 1101 0010
12 3 + 3
1100 Unsigned 0011 1100 Sign and 0011
Magnitude
111011 0100 | 4 0100 [, 4

1010
1001
1000

0101
0110
0111

21
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Sign and Magnitude Not used in practice for

integers!

+» MSB is the sign bit, rest of the bits are magnitude

+» Drawbacks: ///
= Two representations of 0 (bad for checking equality) / o
+ 0

1101
1100

Sign and
5 1011 Magnitude 0100

22
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Sign and Magnitude Not used in practice for

integers!

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)

" Arithmetic is cumbersome —7 +0
- Example: 4-3 = 4+ (-3) -6 1111 0000

_5 / 1110 0001 \+ 2
41 0100 4| 0100 //f 1101 0010
— — _ -4 + 3
o) ooy
- Magnitude
, X _3\1011 € 0100 [, 4

1010
1001
1000

Negatives “increment” in wrong direction!

0111

23



WA/ UNIVERSITY of WASHINGTON L04: Data Il & Integers | CSE351, Spring 2024

Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works /
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Two’s Complement

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate —0

+» MSB still indicates sign!

= This is why we represent one
more negative than positive
number (-2V71 to 2V-1 —1)

1100
_ | 1011

1101

1010

1111
1110

0000

Two’s
Complement

1001

1000 0111

0001

CSE351, Spring 2024

0010
0011

25
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Two’s Complement Negatives (Review)

+» Accomplished with one neat mathematical trick!

b1 has weight —2W~1, other bits have usual weights +2!

= 4-bit Examples:

- 1010, unsigned: -2

1%23+ 0%22+ 1%21 4 0%20 = 10 @ G 3

- 1010, two’s complement:
1%23 4 0%22 + 1%214+ 0*20=—6 —4

1111 0000
1110 0001
1101 0010
1100 Two's 0011

_c\1011 Complement

= -1 represented as:
1111, =-234(23-1)

- MSB makes it super negative, add up
all the other bits to get back up to -1

1010
1001
1000

0101
0110
0111

26
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Polling Question

+ Take the 4-bit number encodingx = 0bl011
+» Which of the following numbers is NOT a valid interpretation of x using

allEe

any of the number representation schemes discussed today?

= Unsigned, Sign and Magnitude, Two’s Complement

" Vote in Ed Lessons o Twot [ompknm*-'
A2 | b 1011

B. -5 — fulr comp/ememl 2% 0¢2%2°= 8

C. 114— onsigned ' s jm,

D. -3 (———&'ﬁnqﬁmﬁmﬁ‘w@ z +o+Z+Z s

,Z'. We’'re lost...  Sign + Magni tude:

&ede/-’ 0b 1101 —97;:’; 3=>-3

27
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Two’s Complement is Great (Review)

Roughly same number of (+) and (—) numbers

L)

0‘0

Positive number encodings match unsigned

L)

0‘0

L)

*

Single zero
All zeros encoding =0

L)

0‘0

1111
1110
1101

0000
0001
0010

L)

*

» Simple negation procedure:

" Get negative representation =% [1100 TWo's o011 |3
of any integer by taking _ o\ 1011 Complement 5,09 v
bitwise complement and 1010 0101
then adding one! -6\ 1001 0110 /+5
(~x + 1 == -x) 1000 0111

28
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Summary

+ Bit-level operators allow for fine-grained manipulations of data

= Bitwise AND (&), OR (|), and NOT (~) different than logical AND (&&), OR (] |), and
NOT (!)

= Especially useful with bit masks
+ Choice of encoding scheme is important

® Tradeoffs based on size requirements and desired operations

+ Integers represented using unsigned and two’s complement
representations

= Limited by fixed bit width

= We'll examine arithmetic operations next lecture

29



