CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Memory, Data, & Addressing |

CSE 351 Spring 2024
Instructor:

Elba Garza

Teaching Assistants:

Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson

Hamsa Shankar

What an awful dream! Ones and zeros

everywhere! And | thought | saw a two.

It wa?i!!st :ﬁream, Bender.
There's no such thing as two.

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

Announcements, Reminders

+ Everything not a reading or lecture lesson due @ 11:59:00 PM
= e.g.LC1 and RD2 were due today at 11:00 AM
= Pre-Course Survey (Canvas) and HWO due tonight
= HW1 due Friday (3/29) by 11:59 PM
= Lab 0 due Monday (4/01) by 11:59 PM

- This lab is exploratory and looks more like a HW; the other labs will look a lot different!
+ Labs: Partners allowed! One lab submission between both students.
+ Ed Discussion etiquette

= For anything that doesn’t involve sensitive information or a solution, post publicly
(you can post anonymously!)

= |f you feel like you question has been sufficiently answered, make sure that a
response has a checkmark; make sure your post is in Question form!

https://courses.cs.washington.edu/courses/cse351/24sp/collab/

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

fhof’s enoush efforf for deoy
+ Encourage class-wide learning! oo
+ Effort

= Attending office hours, completing all assignments

= Keeping up with Ed Discussion activity

L)

*

Participation

= Making the class more interactive by asking questions in lecture, section, office
hours, and on Ed Discussion

= Lecture question voting

o?

< Altruism

= Helping others in section, office hours, and on Ed Discussion

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

The Hardware/Software Interface

+ Topic Group 1: Data T~

Even more applications

= Memory, Data, Integers, Floating Point, : :
ArrayS, Structs Applications

Programming Languages

& Libraries

+» Topic Group 2: Programs Operatig Syster

" x86-64 Assembly, Procedures, Stacks, | Harduare I

E X e C u t a b I e S Transistors, Gates, Digital Systems

Physics

% Topic Group 3: Scale & Coherence

® Caches, Processes, Virtual Memory,
Memory Allocation

WA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

CSE351, Spring 2024

The Hardware/Software Interface

+ Topic Group 1: Data T~

= Memory, Data, Integers, Floating Point, :
Arrays, Structs

Applications

Programming Languages
& Libraries

Operating System

| Hardware I

Transistors, Gates, Digital Systems

Physics

+» Topic Question: How do we store information for other parts of the
house of computing to access?

= How do we represent data and what limitations exist?

= What design decisions and priorities went into these encodings? - Helps
understand thought process!

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: Physical View

N USB...

\
(}' PCl-Express Slots
< 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors

CPU
(empty slot)

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

/O Intel ICH10 |

Chipset
controller

Serial ATA
Headers

Storage connections

DDR2
1066+MHz
Dual Channel
Memory Slots

Memory

WA/ UNIVERSITY of WASHINGTON

Hardware: Logical View

CPU

LO2: Memory & Data |

USB

Etc.

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: 351 View (version 0)

4 N

fdl | —

\LPU Y,

« The CPU executes instructions

+» Memory stores data ﬁ Q1: How are data and J

instructions represented?

Binary encoding!

Instructions are just data; also stored in memory!

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Aside: Why Base 2?

+ Electronic implementation

= Easy to store with bi-stable elements

= Reliably transmitted on noisy and inaccurate wires

— 0

3.3V —
2.8V —

0.5V —

1

/—-\,/_J
0.0V —

/

7\

+» Other bases possible, but not yet viable:

= Ternary has existed (Setun, 1958)

= DNA data storage (base 4: A, C, G, T) here at UW

" Quantum computing

— 0 —

CSE351, Spring 2024

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Hardware: 351 View (version 0)

-

\CPU

FIIl

3%t

/

+ To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation

4) (if applicable) Write the result back to memory

instructions

data

10

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

.) This is extra
Hardware: 351 View (version 1) {(non—testable)]

material
(i-cache

]

F1Il

3%t

T

registers/

instructions

\CPU

«» More CPU details:

= Instructions are held temporarily in the instruction cache (i.e. Harvard Architecture)
® Other data are held temporarily in registers

+ Instruction fetching is hardware-controlled (My research! ﬁ)
+» Data movement is programmer-controlled (assembly)

11

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

Hardware: 351 View (version 1)

i-cach
(|ca£ e

LIl

331t

_CPU T

«» We will start by learning about Memory

Q2: How does a program
find its data in memory?

Addresses!

instructions

Can be stored in pointers

12

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Reading Review

+» Terminology:
= word size, byte-oriented memory
= address, address space
" most-significant bit (MSB), least-significant bit (LSB)
= big-endian, little-endian
" pointer

+» Questions from the reading?

CSE351, Spring 2024

13

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

Review Questions

+ By looking at the bits stored in memory, | can tell what a particular 16
bytes is being used to represent.

A. B. False

+» We can fetch a piece of data from memory as long as we have its address
or its known size.

A. B. False

+» Which of the following bytes have a most-significant bit (MSB) of 17?
A. B. OxAO C. OxCA D. OxD

14

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Base Comparison

+» Why does all of this matter?

= Humans think about numbers in base
10, but computers “think” about
numbers in base 2

= Binary encoding is what allows
computers to do all of the amazing
things that they do!

+ You should have this table
memorized by the end of the class

= Might as well start now!

Base 10 Base 2 Base 16

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
! 0111 /
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE351, Spring 2024

15

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Fixed-Length Binary (Review)

+ Because storage is finite in reality, everything is stored as “fixed”
length

= Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g., 1 byte, 4 bytes, 8 bytes)
= |Leading zeros now must be included up to “fill out” the fixed length

+» Example: the “eight-bit” representation of the number 4 is
Ob(%OOOOlOO

Most Significant Bit (MSB) Least Significant Bit (LSB)

CSE351, Spring 2024

16

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Bits and Bytes and Things (Review)

+» 1 byte = 8 bits

+ n bits can represent up to 2™ things
= Sometimes (oftentimes?) those “things” are bytes!

+ If addresses are a-bits wide, how many distinct addresses are there?
+» What does each address refer to?

S <8
P S

17

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

Machine “Words” (Review)

+ Instructions encoded into machine code (0’s and 1’s)

= Historically (still true in some assembly languages), all instructions were
exactly the size of a word, no deviation

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits — 2" addresses

% Current x86 systems use 64-bit (8-byte) words

= Potential address space: 204 addresses
24 bytes ~ 1.8 x 10'° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

18

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Data Representations

+ Sizes of data types (in bytes)

Java Data Type C Data Type |A-32 (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4
long int 4 8
double double 8 8
long long long 8 8
long double 8 16
(reference) pointer * 4 8

To use “bool” in C, you must #include <stdbool.h>

[address size = word size]

CSE351, Spring 2024

19

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Discussion Question

+» Over time, computers have grown in word size:

m Instruction Set Architecture | First? Intel CPU | Year Introduced

8-bit
16-bit
32-bit
64-bit
64-bit

??? (Poor & Pyle)
x86
|A-32
|A-64
x86-64

Intel 8008
Intel 8086
Intel 386
ltanium (Merced)

Xeon (Nocona)

1972
1978
1985
2001
2004

= What do you think were some of the causes, advantages, and disadvantages of

this trend?

20

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Address of Multibyte Data (Review)

» Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of chunks
of fixed-sized data instead

= Addresses of successive chunks
differ by data size

= Which byte’s address should we
use for each word?

- The address of any chunk of
memory is given by the address
of the first byte

" To specify a chunk of memory,
need both its address and its size

64-bit
data

Addr

0000

32-bit
data

Addr

0000

Bytes

Addr

0008

Addr

0004

Addr

0008

Addr

0012

Addr.
(hex)

Ox00
0x01
0x02
Ox03
0x04
0x05
Ox06
Ox07
Ox08
0x09
Ox0A
0Ox0B
Ox0C
Ox0D
OxOE
OxOF

CSE351, Spring 2024

21

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= |n this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word
|

= An aligned, 64-bit (‘

chunk of data will Address 0Xx00 0x01 0x02 0x03 0x04 0x05 0x06 O0x07

fit on one row Ox00 | ¥ 1 ¥ ¥ Vi Vi ¥y Vi ¥
0x08

0x10

Ox18

0x20

Ox28

0x30

0x38

0x40

0x438

22

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= |n this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word
|

= An aligned, 64-bit l \
chunk of data will Address 02",2 ";‘P? °;,°4, 0;‘,0? 0;‘,0,6 0;‘.07
. 0x00 : : : : :
fit on one row 0x08
0x10
Ox18
0x20
0x28
0x30
O0x38
0x40
0Ox48

o
o
W X%
o
=

el e e el e e el e e el e el s e e () e e e e e e]

N1 NI AL R Ki_N
0x0|A Ox@ 0xoq OXOP 0x¢ OxdF
| : | | |

P = 4

o o
X,a SNé

(=]

PRI RV RN NN NS SN RN [RN E—
(=
x
(=

23

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

{ 64-bit example]
()

pointers are 64-bits wide

Addresses and Pointers

big-endian

+» An address refers to a location in memory

+ A pointer is a data object that holds an address
= Address can point to any data

« Value 504 stored as

Address

a word at addr Ox08 0x00 1
= 504,,=1F8,, Ox08 : 00 : 01 : F8

- 0x 00 ... 00 01 F8 Ox10 I

Ox18 | | |

+ Pointer stored at 0x20 4

0x38 points to Ox28 I

P 0x30 1
address 0x08 0x38 100! 00! 08

0x40 R

0x48 Lo

24

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

{ 64-bit example]
()

pointers are 64-bits wide

Addresses and Pointers

big-endian

+» An address refers to a location in memory

+ A pointer is a data object that holds an address
= Address can point to any data

« Pointer stored at

. Address
0x48 points to 0x00 I
address 0x38 0x08 '00:00:01;F8
, , 0x10 IR
" Pointer to a pointer! Ox18 I N
» |s the data stored 0x20 A S —
, Ox28 I R N
at Ox08 a pointer? 0x30 N N R
" Could be, depending 8)(1313 100 00%00:00;00;08
: X N " N A N
on how you use it 0x48 [001 0000 | 00%00 0000 38

25

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

JiVi([elbaPattul ~]$ tail pointer_example.c
int main(int argc, charx argv[]) {

int 1 = 504;
int *p = &1i;
int *kq = &p;

printf("1 = ¥i\np = ¥p\nq = %¥p\n", 1, p, q);

return 0;
}
[elba@attul ~]$./pointer_example
504
Ox7ffde48b97e4
= Px7ffdo48b97d8
[elba@attul ~1$ §

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Byte Ordering (Review)

+» How should bytes within a word be ordered in memory?

= Want to keep consecutive bytes in consecutive addresses
= Example: store the 4-byte (32-bit) int:
Ox Al B2 C3 D4

+ By convention, ordering of bytes called endianness

" The two options are big-endian and little-endian
« In which address does the least significant byte go?

- Historical: Based on Gulliver’s Travels—tribes cut their eggs on
different sides (big, little)

- Language aside: how we write languages differs too!

Ol A

azafran

CSE351, Spring 2024

27

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

CSE351, Spring 2024

Byte Ordering

+» Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address
+ Little-endian (x86, x86-64)

= |east significant byte has lowest address
+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+» Example: 4-byte data O0xA1B2C3D4 at address 0x100

0x100 O0x101 0x102 0Ox103
Big-Endian Al | B2 | C3 | D4

0x100 Ox101 0x102 0x103
Little-Endian D4 | C3 | B2 | A1

28

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

CSE351, Spring 2024

Polling Question

+» We store the value Ox 01 02 03 04 as a word at address 0x100 in a big-
endian, 64-bit machine

+» What is the byte of data stored at address 0x1047?
= \Vote in Ed Lessons

0x40
0x01
. 0x10
We're lost...

mooO®P

29

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

Endianness

+» Endianness only applies to memory storage

+» Often programmer can ignore endianness because it is handled for you
= Bytes wired into correct place when reading or storing from memory (hardware)

= Compiler and assembler generate correct behavior (software)

+» Endianness still shows up:

= |ogical issues: accessing different amount of data than how you stored it (e.g.,
store int, access byte as a char)

= Need to know exact values to debug memory errors
"= Manual translation to and from machine code (in 351)

30

WA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2024

Summary

+» Memory is a long, byte-addressed array

= Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte in chunk
+ Pointers are data objects that hold addresses

= Type of pointer determines size of thing being pointed at, which could be another
pointer

+» Endianness determines memory storage order for multi-byte data

= |east significant byte in lowest (little-endian) or highest (big-endian) address of
memory chunk

31

