
CSE351, Autumn 2024L28: Java and C - II

Java and C (part II)
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

https://xkcd.com/303

https://xkcd.com/303

CSE351, Autumn 2024L28: Java and C - II

Relevant Course Information
 HW26 due Wednesday (12/04) @ 11:59 pm
 Final Exam Review in Section tomorrow! (12/05)
 Lab 5 (on Mem Alloc) due Thurs (12/05) @ 11:59pm
 Closes Sunday 12/08 @11:59pm

 OPTIONAL HW on Java posted (for practice only)
 Final Exam, on Gradescope
 Released Monday 12/09 at 12:01am
 Due Wednesday 12/11 at 11:59pm

 Course evaluations now open - Please fill these out!
 Separate ones for Lecture and Section

2

CSE351, Autumn 2024L28: Java and C - II

Polling Question
What would you expect to
be the order of contents in an
instance of the Car class?
Vote in Ed Lessons

A. header, Vehicle vtable ptr, passengers,
Car vtable ptr, wheels

B. Vehicle vtable ptr, passengers, wheels
C. header, Vehicle vtable ptr, Car vtable ptr,

passengers, wheels
D. header, Car vtable ptr, passengers, wheels
E. We’re lost…

3

class Vehicle {
int passengers;
// methods not shown

}
class Car extends Vehicle {

int wheels;
// methods not shown

}

CSE351, Autumn 2024L28: Java and C - II

Roadmap

4

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Memory allocation
Processes
Virtual memory
Java vs. C

CSE351, Autumn 2024L28: Java and C - II

Implementing Programming Languages

 Many choices in programming model implementation
 We’ve previously discussed compilation
 One can also interpret

 Interpreters have a long history and are still in use
 e.g., Lisp, an early programming language, was interpreted
 e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, …

5Hardware

Your source code

Binary executable

Hardware

Interpreter
implementation

Interpreter binary

Your source code

CSE351, Autumn 2024L28: Java and C - II

Interpreters
 Execute (something close to) the source code directly, meaning

there is less translation required
 This makes it a simpler program than a compiler and often provides

more transparent error messages

 Easier to run on different architectures – runs in a simulated
environment that exists only inside the interpreter process
 Just port the interpreter (program), and then

interpreting the source code is the same

 Interpreted programs tend to be
slower to execute and
harder to optimize

6Hardware

Interpreter
implementation

Interpreter binary

Your source code

CSE351, Autumn 2024L28: Java and C - II

Interpreters vs. Compilers

 Programs that are designed for use with particular
language implementations
 You can choose to execute code written in a particular language

via either a compiler or an interpreter, if they exist

 “Compiled languages” vs. “interpreted languages” a
misuse of terminology
 But very common to hear this
 And has some validation in the real world (e.g., JavaScript vs. C)

 Some modern language implementations are a mix
 e.g., Java compiles to bytecode that is then interpreted
 Doing just-in-time (JIT) compilation of parts to assembly for

performance

7

CSE351, Autumn 2024L28: Java and C - II

Compiling and Running Java

1. Save your Java code in a .java file

2. To run the Java compiler:
 javac Foo.java

 The Java compiler converts Java into Java bytecodes
• Stored in a .class file

3. To execute the program stored in the bytecodes,
these can be interpreted by the Java Virtual Machine
(JVM)
 Running the virtual machine: java Foo
 Loads Foo.class and interprets the bytecodes

8

CSE351, Autumn 2024L28: Java and C - II

“The JVM”

 Java programs are usually run by a
Java virtual machine (JVM)

 JVMs interpret an intermediate language called Java
bytecode
 Many JVMs compile bytecode to native machine code

• Just-in-time (JIT) compilation
• http://en.wikipedia.org/wiki/Just-in-time_compilation

 Java is sometimes compiled ahead of time (AOT) like C

9

Note: The JVM is different than the CSE VM running
on VMWare. Yet another use of the word “virtual”!

http://en.wikipedia.org/wiki/Just-in-time_compilation

CSE351, Autumn 2024L28: Java and C - II

Virtual Machine Model

10

High-Level Language Program
(e.g., Java, C)

Virtual Machine Language
(e.g., Java bytecodes)

Native Machine Language
(e.g., x86, ARM, MIPS)

Bytecode compiler
(e.g., javac Foo.java)

Virtual machine (interpreter)
(e.g., java Foo)

Ahead-of-time
compiler

JIT
compiler

run time

compile time

CSE351, Autumn 2024L28: Java and C - II

Polling Question – Answer in Ed Lessons
 You type javac and java at the command line.

You provide an argument to both commands.
javac:

 A) Is a: java source file/bytecode file/executable
 B) Its argument should refer to: ____
 C) It does this: ____

java:

 A) Is a java source file/bytecode file/executable
 B) Its argument should refer to ____
 C) It does this: ____

11

CSE351, Autumn 2024L28: Java and C - II

Java Bytecodes

 “Assembly code” for the Java Virtual Machine (JVM)
 works on all JVMs
 Hardware-independent! The JVM is just a program that has

been compiled to run on this particular hardware

 Bytecodes are typed (unlike x86 assembly)

12

iload 1 // push 1st argument from variable table onto operand stack
iload 2 // push 2nd argument from variable table onto operand stack
iadd // pop top 2 elements from operand stack, add together, and

// push result back onto operand stack
istore 3 // pop result and put it into third slot in variable table

‘i’ = integer,
‘a’ = reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, ...

CSE351, Autumn 2024L28: Java and C - II

The Java Virtual Machine (JVM)
 Similar to how we described

the state that x86 assembly
instructions could modify:
registers, memory,
condition codes

 Java Bytecodes modify the state
of the JVM: operand stack,
variable table

 The state that x86 assembly
modifies is actual hardware!

 The state that Java bytecodes
modify is the state of a program!

13

0 1 2 3 4 n
variable table

operand stack

constant
pool

Holds pointer this

Other arguments to method

Other local variables

CSE351, Autumn 2024L28: Java and C - II

Java Bytecode in Action

14

iload 1 // push 1st argument from table onto stack
iload 2 // push 2nd argument from table onto stack
iadd // pop top 2 elements from stack, add together, and

// push result back onto stack
istore 3 // pop result and put it into third slot in table

mov 8(%ebp), %eax
mov 12(%ebp), %edx
add %edx, %eax
mov %eax, -8(%ebp)

Compiled
to (IA32) x86:

Java
Bytecode:

0 1 2 3 4 n

constant
pool

variable table
operand stack

The state of
the JVM:

Holds pointer this
Other arguments to method

Other local variables

No registers or stack locations!
All operations use operand stack

CSE351, Autumn 2024L28: Java and C - II

A Simple Java Method

15

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name>
// getfield instruction has a 3-byte encoding
// Pop an element from top of stack, retrieve its
// specified instance field and push it onto stack
// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

2A B4 00 05 B0As stored in the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

0
aload_0 getfield 00 05 areturn

1 4Byte number:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Autumn 2024L28: Java and C - II

Class File Format
 Every class in Java source code is compiled to its own class file
 10 sections in the Java class file structure:
 Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)
 Version of class file format: The minor and major versions of the class file
 Constant pool: Set of constant values for the class
 Access flags: For example whether the class is abstract, static, final, etc.
 This class: The name of the current class
 Super class: The name of the super class
 Interfaces: Any interfaces in the class
 Fields: Any fields in the class
 Methods: Any methods in the class
 Attributes: Any attributes of the class (for example, name of source file, etc.)

 A .jar file collects together all of the class files needed for
the program, plus any additional resources (e.g. images)

16

CSE351, Autumn 2024L28: Java and C - II

Disassembled
Java Bytecode

17

Compiled from Employee.java
class Employee extends java.lang.Object {
public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();
public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)
0 aload_0
1 invokespecial #3 <Method java.lang.Object()>
4 aload_0
5 aload_1
6 putfield #5 <Field java.lang.String name>
9 aload_0
10 iload_2
11 putfield #4 <Field int idNumber>
14 aload_0
15 aload_1
16 iload_2
17 invokespecial #6 <Method void

storeData(java.lang.String, int)>
20 return

Method java.lang.String getEmployeeName()
0 aload_0
1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber()
0 aload_0
1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)
…

> javac Employee.java
> javap -c Employee

http://en.wikipedia.org/wiki/Ja
va_bytecode_instruction_listing
s

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Autumn 2024L28: Java and C - II

Other languages for JVMs
 JVMs run on so many computers that compilers have been

built to translate many other languages to Java bytecode:
 AspectJ, an aspect-oriented extension of Java
 ColdFusion, a scripting language compiled to Java
 Clojure, a functional Lisp dialect
 Groovy, a scripting language
 JavaFX Script, a scripting language for web apps
 JRuby, an implementation of Ruby
 Jython, an implementation of Python
 Rhino, an implementation of JavaScript
 Scala, an object-oriented and functional programming language
 And many others, even including C!

 Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC’ed platform

18

CSE351, Autumn 2024L28: Java and C - II

Microsoft’s C# and .NET Framework
 C# has similar motivations as Java
 Virtual machine is called the

Common Language Runtime
 Common Intermediate Language

is the bytecode for C# and other
languages in the .NET framework

19

CSE351, Autumn 2024L28: Java and C - II

We made it! ☺😎😎😂😂

20

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Memory allocation
Processes
Virtual memory
Java vs. C

	Java and C (part II)�CSE 351 Autumn 2024
	Relevant Course Information
	Polling Question
	Roadmap
	Implementing Programming Languages
	Interpreters
	Interpreters vs. Compilers
	Compiling and Running Java
	“The JVM”
	Virtual Machine Model
	Polling Question – Answer in Ed Lessons
	Java Bytecodes
	The Java Virtual Machine (JVM)
	Java Bytecode in Action
	A Simple Java Method
	Class File Format
	Disassembled�Java Bytecode
	Other languages for JVMs
	Microsoft’s C# and .NET Framework
	We made it! ☺ 😎 😂

