YA UNIVERSITY of WASHINGTON

L27: Javaand C -1

Java and C (part |)

CSE 351 Autumn 2024

Instructor:
Ruth Anderson

Chendur Jayavelu
Nahush Shrivatsa
Renee Ruan

Sean Siddens

Alexandra Michael

Teaching Assistants:

Connie Chen
Joshua Tan
Naama Amiel
Rubee Zhao
Waleed Yagoub

CSE351, Autumn 2024

Chloe Fong

Neela Kausik

SERIOUSLY? THIS
THING RUNS JALA?
ITS SINGLE-PURASE
HARDWARE!

5\
4

T BET THEY ACTUALLY HIRED SOVEONE
TO SPEND SIx MONTHS FORTING THIS
JWM S0 THEY COULD WRITE THEIR 20

UNES OF CODE INA FAMILIAR SETTING.

[|

WELL, YOU KNOW WHAT THEY SAY-—
WHEN ALL YOU HAVE IS A PAIR OF
BOLT CUTTERS AND A BOTTLE oF VoDKA,
EVERYTHING LOOKS LIKE THE LOCK ON
THE DOOR OF WOLF BLITZERS BOATHOUSE..

./
p

IMGLAD
YOU HAD A
NICE NIGHT.

https://xkcd.com/801/

Nikolas McNamee

Samantha Dreussi

https://xkcd.com/801/

YA UNIVERSITY of WASHINGTON - CSE351, Autumn 2024

Relevant Course Information

» HW25 due Monday (12/02) @ 11:59 pm
+» HW26 due Wednesday (12/04) @ 11:59 pm
+» Lab 5 (on Mem Alloc) due Thurs (12/05) @ 11:59pm

" The most significant amount of C programming you will do in
this class — combines lots of topics from this class: pointers,
bit manipulation, structs, examining memory

®" Understanding the concepts first and efficient debugging will
save you lots of time

" Light style grading

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Lab 5 Tips

+ Struct pointers can be used to access field values,
even if no struct instances have been created — just
reinterpreting the data in memory

+» Pay attention to boundary tag data

= Size value + 2 tag bits — when do these need to be updated
and do they have the correct values?

" The examine heap function follows the implicit free list
searching algorithm — don’t take its output as “truth”

+ Learn to use and interpret the trace files for testing!!!

+ A special heap block marks the end of the heap

YA UNIVERSITY of WASHINGTON

L27: Javaand C -1

CSE351, Autumn 2024

Roadmap | 9105

990 <

C: Java: Memory & data
car *c = malloc (sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs

= = Memory & caches
Assembly <_>Jet_mp<911=1) Memory allocation

. pushqg srbp

language: move 4rsp, Hrbp P_rocesses

- Virtual memory

pPopq srbp Javavs. C

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A A
coae. 1000100111000010 A
110000011111101000011111 Windows 10 05X Yoserite N
| [|
v v

Computer

system:

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Java (1995) vs. C (1972)

+» Reconnecting to Java (hello CSE12x/CSE14x!)

" But now you know a lot more about what really happens
when we execute programs

+» We’'ve learned about the following items in C; now
we’ll see what they look like for Java:
rTRepresentation of data
= Pointers / references
= Casting
" Function / method calls including dynamic dispatch

-

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Worlds Colliding

+» CSE351 has given you a “really different feeling”
about what computers do and how programs execute

+» We have occasionally contrasted to Java, but
CSE12x/CSE14x may still feel like “a different world”
" |t's not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Meta-point to this lecture

+» None of the data representations we are going to talk
about are guaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

" Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

" Butitisimportant to understand an implementation of the
lower levels — useful in thinking about your program

YA UNIVERSITY of WASHINGTON L27: Javaand C -1

CSE351, Autumn 2024

Data in Java

Integers, floats, d_o_uJ;lles,\pgi_rEers L same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: int is 4 bytes in Java regardless of machine

—

" No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)

» null is typically represented as O but “you can’t tell”

«» Much more interesting:
" Arrays

\/
0’0

" Characters and strings
" Objects

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Data in Java: Arrays

Every element initialized to O or null

Length specified in immutable field at start of array (int: 4B)
" array.length returns value of this field

O ——

+ Since it has this info, what can it do?

C: int array[5];

fard Weard ard lefd IEars

20

Java: (intl]array=newint[Sl; _ ; odecs zeros
s zefleng™ 00{00]00]00 ooT/

s only 0 4 20 24

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Data in Java: Arrays

+ Every element initialized to O or null

Length specified in immutable field at start of array (int: 4B)
" array.length returns value of this field

+ Every access triggers a bounds-check

" Codeis added to ensure the index is within bounds
= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
* Length field is likely in cache
* Compiler may store length field

fard Weard ard lefd IEars

’ 4@¢m access 20 register for loops
Java: /\mt[array =\ew int[5]; * | Compiler may prove that some
(Dfékeck 455 00loo bO 0olo0 checks are redundant
vt

0 4 20 24

10

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Data in Java: Characters & Strings

» Two-byte Unicode instead of ASCII
= Represents most of the world’s alphabets

» String not bounded by a '\0"' (null character)
= Bounded by hidden length field at beginning of string

» All String objects read-only (vs. StringBuffer)

12346 ¢

Example: the string “CSE351"

. /\—A N
%scu 13[53]45]33[35]31|\0| ¢
() 0 1" 4 7

N

Ja_la. 6 43|00]|53[00]45[00(33]00|35[|00]|31f00] |¢R
(Unicode) 1 —— ——3 16

L\G d(ra\/ SHze l’\ede(23 er dhav
11

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Data in Java: Objects

+ Data structures (objects) are always stored by reference, never
stored “inline”
" Include complex data types (arrays, other objects, etc.) using references

C. Java:
struct rec { class Rec {
int i; int i;
int a[3]; int[] a = f1iew int[3];
struct rec *p; Rec p;
b2 « o V_Qb{\/‘D(}S
= a[] stored “inline” as part of)
struct = a stored by reference in object
g pointer
\28 O\Iray f

]

0 4 16 24 5 Grret.
oh)

0 4 lo 12

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Pointer/reference fields and variables

+ In C, we have ”—J” and U for field selection depending on
whether we have a pointer to a struct or a struct

" (*r) .aissocommon it becomes r->a

+ InJava, all non-primitive variables are references to objects
= We always use r. a notation
= But really follow reference to r with offset to a, just like r=>ain C

® So no Java field needs more than 8 bytes

A
C - s cefeee «* Java:
struct rec (*r JA malloc(...); & r = new Rec();
struct rec (r2; , °r2 = new Rec();
r@i = val; /) C)(r>ml r.i = val;
r=>al2] = val; r.al[2] = val;
r@p = &r2; ’_p = r2;

13

L27: Javaand C -1

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON

Pointers/References

Pointers in C can point to any memory address

R/
0.0

References in Java can only point to [the starts of] objects

= Can only be dereferenced to access a field or element of that object

C: Java:
struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
I }
struct rec* r = malloc(..); Rec r = new Rec();
some_fn (&(r->a[l])); // ptr | |some_fn(r.a, 1); // ref, index
r r /f‘-9> aﬁ:%mﬂibc
o My L \liaf pé
la:(B p‘ 0 4 12 20 ‘
0 4 16 24 3 [int[3]

16 14

L27: Javaand C -1

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON

Casting in C (example from Lab 5)

*

® Changes dereference and arithmetic behavior

+ Can cast any pointer into any other pointer

struct block info {
size t size and tags;
struct block info* next;
struct block info* prev;

b7
typedef struct block info block info;

int x;
block info* Db;

block info* new block; /

new block = (char*) b

|

Cast b into char* to
do unscaled addition

Cast back into
block info* touse
asblock info struct

X)5
/C-—h«o\,{ IO\/

X L)rfq

(block info*) (
} _\

n

1S

© S

15

0 8 1lo 24 X

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Type-safe casting in Java

= Can only cast compatible object references

INY]
= Based on class hierarchy cl‘?Si Bosie ‘l*’l‘tends e bEiciciN
int propellers;
S\A?erdm) }\ .
ab AAGCS
class Object { class Vehicle { y

class Car extends Vehicle {
int wheels;

}

.. > int passengers;
} }
actunal o\:jea‘s

YC{C rences !

Vehicle /@\= new Vehicle ()| // super class of Boat and Car

Boat bllj= lnew Boat () ; // |-=-> sibling

Car cl|= Car () ; // |-=-> sibling
/;>Vehic1e = new Car();

Vehicle = vl;

Car = new Boat();

Car = new Vehicle () ;

Boat = (Boat) v;

Car = (Car) v2;

Car = (Car) bl;

16

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Type-safe casting in Java

+» Can only cast compatible object references
] Based on Class hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat(); // |-=-> sibling

Car cl = new Car(); // |-=-> sibling

Vehi vl new Car () ; «—— / Everything needed for Vehicle alsoin Car
ehicle v vl; «—— / vlisdeclared astype Vehicle

Car c2 = new Boat(); «—— X Compiler error: Incompatible type — elements in

Car that are not in Boat (siblings)
Car c3 = new Vehicle () ;

Boat b2 = (Boat) v;

Car c4d = (Car) v2;
Car cbhb = (Car) Dbl;

17

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Type-safe casting in Java

+» Can only cast compatible object references

] Based on Class hlerarchy class Boat extends Vehicle {

int propellers;

}

slass Object o edlezs Wendole class Car extends Vehicle {
.. > int passengers; int wheels;
o\e-(mes '”we} wiev'’s “dch(szi'(}'l +hat }
inte-fuce wilk doject yor_interact with
Vehicle v = new Vehicle(): // super class of Boat and Car
Boat bl = new Boat(); // |-=-> sibling
Car cl = new Car(); // |-=-> sibling
Vehicle vl =Chew Car(); «—— / Everything needed for Vehicle alsoin Car
Vehicle v2 = vl; «—— / vlisdeclared astype Vehicle
Car c2 = new Boat(); «—— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)
Car c3 = new Vehicle (); «—— X Compiler error: Wrong direction — elements Car
not in Vehicle (wheels)
Boat b2 = (Boat) v; «—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)
Car cd = (Car) v2; «—— / v2referstoaCar at runtime
Car c5 = (Car) Dbl; «—— X Compiler error: Unconvertable types —b1 is

declared as type Boat 18

YA UNIVERSITY of WASHINGTON

L27: Javaand C -1

Java Object Definitions

CSE351, Autumn 2024

class Point
double x;
double vy;

Point () {
x = 0;
y = 0;

return

}

Point p

new Point () ;<

{

}<

<€

fields

boolean samePlace (Point p)

(x == p.x) &&

{

(y == p.Y);

constructor

— method(s)

—

creation

19

YA UNIVERSITY of WASHINGTON L27: Javaand C -1

CSE351, Autumn 2024

Java Objects and Method Dispatch

Point object
P

header | vptr

vtable for class Point:

code for Point () code for samePlace ()

Point object

o— €10

q

header |vptr X Y

« Object header : GC info, hashing info, lock info, etc.
« Virtual method table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info
"= Only one table per class

= Each object instance contains a vtable pointer (vptr)

20

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Java Constructors

<+ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point));
p->header = ...;

p->vptr = &Point vtable;
p—->vptr[0] (p);

Point object

P

header |vptr ° X Y
v

vtable for class Point: . o

\ code for Point () code for samePlace ()

21

YA UNIVERSITY of WASHINGTON

Java Methods

L27: Javaand C -1

+ Static methods are just like functions

+» Instance methods:
= Can refer to this;

= Have an implicit first parameter for this; and

® Can be overridden in subclasses

0’0

runtime by lookup in the vtable

Java:
p.samePlace (q) ;

Point object
P

» The code to run when calling an instance method is chosen at

C pseudo-translation:

p->vptr[l] (p, 9)-

header | vptr

®
v

vtable for class Point:

~

code for Point ()

code for samePlace ()

CSE351, Autumn 2024

22

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println ("hello");

}

+» Where does “z” go? At end of fields of Point

" Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification
+» Where does pointer to code for two new methods go?
= No constructor, so use default Point constructor
" To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayHi”

23

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Subclassing: Object Layout

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println ("hello");

z tacked on at end
ThreeDPoint object ‘

header | vptr X Y z

b

sayHi tackfd on at end Code for
r4 E sayH1
o

vtable for ThreeDPoint: constructor @ samePlace flsayHi

(not Point) \

Old code for New code for
constructor samePlace

24

YA UNIVERSITY of WASHINGTON L27: Javaand C- | CSE351, Autumn 2024

Dynamic Dispatch

Point object

header | vptr X Y

Point vtable:

De=> 277 \\>
code for Point ()

ThreeDPoint object A

code for Point’s samePlace ()

header | vptr X Y z

ThreeDPoint vtable: ‘\\\\d o—

code for ThreeDPoint’s samePlace ()

___4) code for sayHi ()

Java: C pseudo-translation:

Point p = 2?2°?; // works regardless of what p 1is
return p.samePlace(q) return p->vtr[l] (p, q):

25

YA UNIVERSITY of WASHINGTON - CSE351, Autumn 2024

Inheritance and Overriding Methods

» In CSE12x/CSE14x, it may have seemed “magic” that
an inherited method could call an overridden method

+» The “trick” in the implementation is this part:

p->vptr[i] (p,q)
" |n the body of the pointed-to code, any calls to (other)
methods of this will use p—>vptr

= Dispatch determined by p, not the class that defined a
method

26

	Java and C (part I)�CSE 351 Autumn 2024
	Relevant Course Information
	Lab 5 Tips
	Roadmap
	Java (1995) vs. C (1972)
	Worlds Colliding
	Meta-point to this lecture
	Data in Java
	Data in Java: Arrays
	Data in Java: Arrays
	Data in Java: Characters & Strings
	Data in Java: Objects
	Pointer/reference fields and variables
	Pointers/References
	Casting in C (example from Lab 5)
	Type-safe casting in Java
	Type-safe casting in Java
	Type-safe casting in Java
	Java Object Definitions
	Java Objects and Method Dispatch
	Java Constructors
	Java Methods
	Subclassing
	Subclassing: Object Layout
	Dynamic Dispatch
	Inheritance and Overriding Methods

