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Relevant Course Information

 HW25 due Monday (12/02) @ 11:59 pm
 HW26 due Wednesday (12/04) @ 11:59 pm
 Lab 5 (on Mem Alloc) due Thurs (12/05) @ 11:59pm
 The most significant amount of C programming you will do in 

this class – combines lots of topics from this class: pointers, 
bit manipulation, structs, examining memory
 Understanding the concepts first and efficient debugging will 

save you lots of time
 Light style grading
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Lab 5 Tips

 Struct pointers can be used to access field values, 
even if no struct instances have been created – just 
reinterpreting the data in memory

 Pay attention to boundary tag data
 Size value + 2 tag bits – when do these need to be updated 

and do they have the correct values?
 The examine_heap function follows the implicit free list 

searching algorithm – don’t take its output as “truth”

 Learn to use and interpret the trace files for testing!!!

 A special heap block marks the end of the heap
3
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Roadmap
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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Memory allocation
Processes
Virtual memory
Java vs. C
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Java (1995) vs. C (1972)

 Reconnecting to Java (hello CSE12x/CSE14x!)
 But now you know a lot more about what really happens 

when we execute programs

 We’ve learned about the following items in C; now
we’ll see what they look like for Java:
 Representation of data
 Pointers / references
 Casting
 Function / method calls including dynamic dispatch
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Worlds Colliding

 CSE351 has given you a “really different feeling” 
about what computers do and how programs execute

 We have occasionally contrasted to Java, but 
CSE12x/CSE14x may still feel like “a different world”
 It’s not – it’s just a higher-level of abstraction
 Connect these levels via how-one-could-implement-Java in 

351 terms
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Meta-point to this lecture

 None of the data representations we are going to talk 
about are guaranteed by Java

 In fact, the language simply provides an abstraction
(Java language specification)
 Tells us how code should behave for different language 

constructs, but we can't easily tell how things are really 
represented
 But it is important to understand an implementation of the 

lower levels – useful in thinking about your program
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Data in Java

 Integers, floats, doubles, pointers – same as C
 “Pointers” are called “references” in Java, but are much 

more constrained than C’s general pointers
 Java’s portability-guarantee fixes the sizes of all types

• Example: int is 4 bytes in Java regardless of machine

 No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

 null is typically represented as 0 but “you can’t tell”
 Much more interesting:
 Arrays
 Characters and strings
 Objects
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Data in Java:  Arrays
 Every element initialized to 0 or null
 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Since it has this info, what can it do?
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int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

5 00 00 00 00 00
0 4 20 24

int[] array = new int[5];
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Data in Java:  Arrays
 Every element initialized to 0 or null
 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Every access triggers a bounds-check
 Code is added to ensure the index is within bounds
 Exception if out-of-bounds
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int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field 

in register for loops
• Compiler may prove that some 

checks are redundant5 00 00 00 00 00
0 4 20 24

int[] array = new int[5];
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Data in Java:  Characters & Strings

 Two-byte Unicode instead of ASCII
 Represents most of the world’s alphabets

 String not bounded by a '\0' (null character)
 Bounded by hidden length field at beginning of string

 All String objects read-only (vs. StringBuffer)
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Example:  the string “CSE351”

43 \0
0 1 4

53 45 33 35 31
7

C:
(ASCII)

Java:
(Unicode)

16
6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8
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Data in Java:  Objects

 Data structures (objects) are always stored by reference, never 
stored “inline”
 Include complex data types (arrays, other objects, etc.) using references
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C:

 a[] stored “inline” as part of 
struct

struct rec {
int i;
int a[3];
struct rec *p;

};

Java:

 a stored by reference in object

class Rec {
int i;
int[] a = new int[3];
Rec p;
...

}

i a p
0 4 16 24

i a p
0 4 2012

4 16
3

0
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Pointer/reference fields and variables
 In C, we have “->” and “.” for field selection depending on 

whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation
 But really follow reference to r with offset to a, just like r->a in C
 So no Java field needs more than 8 bytes
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struct rec *r = malloc(...);
struct rec r2;
r->i = val; 
r->a[2] = val;
r->p = &r2;

r = new Rec();
r2 = new Rec();
r.i = val;
r.a[2] = val;
r.p = r2;

C: Java:
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Pointers/References

 Pointers in C can point to any memory address
 References in Java can only point to [the starts of] objects
 Can only be dereferenced to access a field or element of that object
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struct rec {
int i;
int a[3];
struct rec *p;

};
struct rec* r = malloc(…);
some_fn(&(r->a[1])); // ptr

class Rec {
int i;
int[] a = new int[3];
Rec p;

}
Rec r = new Rec();
some_fn(r.a, 1); // ref, index

r r

i a p
0 4 16 24

i a p
0 4 2012

int[3]
4 16

3
0

Java:C:
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Casting in C (example from Lab 5)

 Can cast any pointer into any other pointer
 Changes dereference and arithmetic behavior
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struct block_info {
size_t size_and_tags;
struct block_info* next;
struct block_info* prev;

};
typedef struct block_info block_info;
...
int x;
block_info* b;
block_info* new_block; 
...
new_block = (block_info*) ( (char*) b + x );
...

Cast back into 
block_info* to use 
as block_info struct

Cast b into char* to 
do unscaled addition

s n p
80 16 24

s n p
x
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Type-safe casting in Java
 Can only cast compatible object references
 Based on class hierarchy
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Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat();    // |--> sibling
Car c1 = new Car();     // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}
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Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat();    // |--> sibling
Car c1 = new Car();     // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe casting in Java
 Can only cast compatible object references
 Based on class hierarchy
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class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error:  Incompatible type – elements in 

Car that are not in Boat (siblings)
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Java Object Definitions
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class Point {
double x;
double y;

Point() {
x = 0;
y = 0;

}

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);

}
}
...
Point p = new Point();
...

constructor

fields

method(s)

creation



CSE351, Autumn 2024L27:  Java and C - I

Java Objects and Method Dispatch

 Object header : GC info, hashing info, lock info, etc.
 Virtual method table (vtable)
 Like a jump table for instance (“virtual”) methods plus other class info
 Only one table per class
 Each object instance contains a vtable pointer (vptr)

20

code for Point() code for samePlace()

vtable for class Point: 

q
xvptr yheader

Point object

p
xvptr yheader

Point object
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Java Constructors
 When we call new:  allocate space for object (data fields and 

references), initialize to zero/null, and run constructor method
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Point p = new Point(); Point* p = calloc(1,sizeof(Point));
p->header = ...;
p->vptr = &Point_vtable;
p->vptr[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point: 

p
xvptr yheader

Point object

C pseudo-translation:
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Java Methods

 Static methods are just like functions
 Instance methods:
 Can refer to this;
 Have an implicit first parameter for this; and
 Can be overridden in subclasses

 The code to run when calling an instance method is chosen at 
runtime by lookup in the vtable
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p.samePlace(q); p->vptr[1](p, q);
Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point: 

p
xvptr yheader

Point object
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Subclassing

 Where does “z” go?  At end of fields of Point
 Point fields are always in the same place, so Point code can run on 
ThreeDPoint objects without modification

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor
 To override “samePlace”, use same vtable position
 Add new pointer at end of vtable for new method “sayHi”

23

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}
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Subclassing: Object Layout

24

New code for
samePlace

Old code for 
constructor

sayHi tacked on at end Code for 
sayHi

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

xvptr yheader

ThreeDPoint object
z

constructor samePlacevtable for ThreeDPoint: 
(not Point)

sayHi

z tacked on at end
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code for Point()

code for Point’s samePlace()
Point vtable: 

xvptr yheader

Point object

p    ???

Dynamic Dispatch

25

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vtr[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object
z

ThreeDPoint vtable:
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Inheritance and Overriding Methods

 In CSE12x/CSE14x, it may have seemed “magic” that 
an inherited method could call an overridden method

 The “trick” in the implementation is this part:
p->vptr[i](p,q)

 In the body of the pointed-to code, any calls to (other) 
methods of this will use p->vptr
 Dispatch determined by p, not the class that defined a 

method

26
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