
CSE351, Autumn 2024L27: Java and C - I

Java and C (part I)
CSE 351 Autumn 2024
Instructor: Teaching Assistants:
Ruth Anderson Alexandra Michael Connie Chen Chloe Fong

Chendur Jayavelu Joshua Tan Nikolas McNamee
Nahush Shrivatsa Naama Amiel Neela Kausik
Renee Ruan Rubee Zhao Samantha Dreussi
Sean Siddens Waleed Yagoub

https://xkcd.com/801/

https://xkcd.com/801/

CSE351, Autumn 2024L27: Java and C - I

Relevant Course Information

 HW25 due Monday (12/02) @ 11:59 pm
 HW26 due Wednesday (12/04) @ 11:59 pm
 Lab 5 (on Mem Alloc) due Thurs (12/05) @ 11:59pm
 The most significant amount of C programming you will do in

this class – combines lots of topics from this class: pointers,
bit manipulation, structs, examining memory
 Understanding the concepts first and efficient debugging will

save you lots of time
 Light style grading

2

CSE351, Autumn 2024L27: Java and C - I

Lab 5 Tips

 Struct pointers can be used to access field values,
even if no struct instances have been created – just
reinterpreting the data in memory

 Pay attention to boundary tag data
 Size value + 2 tag bits – when do these need to be updated

and do they have the correct values?
 The examine_heap function follows the implicit free list

searching algorithm – don’t take its output as “truth”

 Learn to use and interpret the trace files for testing!!!

 A special heap block marks the end of the heap
3

CSE351, Autumn 2024L27: Java and C - I

Roadmap

4

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Memory allocation
Processes
Virtual memory
Java vs. C

CSE351, Autumn 2024L27: Java and C - I

Java (1995) vs. C (1972)

 Reconnecting to Java (hello CSE12x/CSE14x!)
 But now you know a lot more about what really happens

when we execute programs

 We’ve learned about the following items in C; now
we’ll see what they look like for Java:
 Representation of data
 Pointers / references
 Casting
 Function / method calls including dynamic dispatch

5

CSE351, Autumn 2024L27: Java and C - I

Worlds Colliding

 CSE351 has given you a “really different feeling”
about what computers do and how programs execute

 We have occasionally contrasted to Java, but
CSE12x/CSE14x may still feel like “a different world”
 It’s not – it’s just a higher-level of abstraction
 Connect these levels via how-one-could-implement-Java in

351 terms

6

CSE351, Autumn 2024L27: Java and C - I

Meta-point to this lecture

 None of the data representations we are going to talk
about are guaranteed by Java

 In fact, the language simply provides an abstraction
(Java language specification)
 Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented
 But it is important to understand an implementation of the

lower levels – useful in thinking about your program

7

CSE351, Autumn 2024L27: Java and C - I

Data in Java

 Integers, floats, doubles, pointers – same as C
 “Pointers” are called “references” in Java, but are much

more constrained than C’s general pointers
 Java’s portability-guarantee fixes the sizes of all types

• Example: int is 4 bytes in Java regardless of machine

 No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

 null is typically represented as 0 but “you can’t tell”
 Much more interesting:
 Arrays
 Characters and strings
 Objects

8

CSE351, Autumn 2024L27: Java and C - I

Data in Java: Arrays
 Every element initialized to 0 or null
 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Since it has this info, what can it do?

9

int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

5 00 00 00 00 00
0 4 20 24

int[] array = new int[5];

CSE351, Autumn 2024L27: Java and C - I

Data in Java: Arrays
 Every element initialized to 0 or null
 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Every access triggers a bounds-check
 Code is added to ensure the index is within bounds
 Exception if out-of-bounds

10

int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant5 00 00 00 00 00
0 4 20 24

int[] array = new int[5];

CSE351, Autumn 2024L27: Java and C - I

Data in Java: Characters & Strings

 Two-byte Unicode instead of ASCII
 Represents most of the world’s alphabets

 String not bounded by a '\0' (null character)
 Bounded by hidden length field at beginning of string

 All String objects read-only (vs. StringBuffer)

11

Example: the string “CSE351”

43 \0
0 1 4

53 45 33 35 31
7

C:
(ASCII)

Java:
(Unicode)

16
6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Autumn 2024L27: Java and C - I

Data in Java: Objects

 Data structures (objects) are always stored by reference, never
stored “inline”
 Include complex data types (arrays, other objects, etc.) using references

12

C:

 a[] stored “inline” as part of
struct

struct rec {
int i;
int a[3];
struct rec *p;

};

Java:

 a stored by reference in object

class Rec {
int i;
int[] a = new int[3];
Rec p;
...

}

i a p
0 4 16 24

i a p
0 4 2012

4 16
3

0

CSE351, Autumn 2024L27: Java and C - I

Pointer/reference fields and variables
 In C, we have “->” and “.” for field selection depending on

whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation
 But really follow reference to r with offset to a, just like r->a in C
 So no Java field needs more than 8 bytes

13

struct rec *r = malloc(...);
struct rec r2;
r->i = val;
r->a[2] = val;
r->p = &r2;

r = new Rec();
r2 = new Rec();
r.i = val;
r.a[2] = val;
r.p = r2;

C: Java:

CSE351, Autumn 2024L27: Java and C - I

Pointers/References

 Pointers in C can point to any memory address
 References in Java can only point to [the starts of] objects
 Can only be dereferenced to access a field or element of that object

14

struct rec {
int i;
int a[3];
struct rec *p;

};
struct rec* r = malloc(…);
some_fn(&(r->a[1])); // ptr

class Rec {
int i;
int[] a = new int[3];
Rec p;

}
Rec r = new Rec();
some_fn(r.a, 1); // ref, index

r r

i a p
0 4 16 24

i a p
0 4 2012

int[3]
4 16

3
0

Java:C:

CSE351, Autumn 2024L27: Java and C - I

Casting in C (example from Lab 5)

 Can cast any pointer into any other pointer
 Changes dereference and arithmetic behavior

15

struct block_info {
size_t size_and_tags;
struct block_info* next;
struct block_info* prev;

};
typedef struct block_info block_info;
...
int x;
block_info* b;
block_info* new_block;
...
new_block = (block_info*) ((char*) b + x);
...

Cast back into
block_info* to use
as block_info struct

Cast b into char* to
do unscaled addition

s n p
80 16 24

s n p
x

CSE351, Autumn 2024L27: Java and C - I

Type-safe casting in Java
 Can only cast compatible object references
 Based on class hierarchy

16

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

CSE351, Autumn 2024L27: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe casting in Java
 Can only cast compatible object references
 Based on class hierarchy

17

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)

CSE351, Autumn 2024L27: Java and C - I

Java Object Definitions

19

class Point {
double x;
double y;

Point() {
x = 0;
y = 0;

}

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);

}
}
...
Point p = new Point();
...

constructor

fields

method(s)

creation

CSE351, Autumn 2024L27: Java and C - I

Java Objects and Method Dispatch

 Object header : GC info, hashing info, lock info, etc.
 Virtual method table (vtable)
 Like a jump table for instance (“virtual”) methods plus other class info
 Only one table per class
 Each object instance contains a vtable pointer (vptr)

20

code for Point() code for samePlace()

vtable for class Point:

q
xvptr yheader

Point object

p
xvptr yheader

Point object

CSE351, Autumn 2024L27: Java and C - I

Java Constructors
 When we call new: allocate space for object (data fields and

references), initialize to zero/null, and run constructor method

21

Point p = new Point(); Point* p = calloc(1,sizeof(Point));
p->header = ...;
p->vptr = &Point_vtable;
p->vptr[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvptr yheader

Point object

C pseudo-translation:

CSE351, Autumn 2024L27: Java and C - I

Java Methods

 Static methods are just like functions
 Instance methods:
 Can refer to this;
 Have an implicit first parameter for this; and
 Can be overridden in subclasses

 The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

22

p.samePlace(q); p->vptr[1](p, q);
Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p
xvptr yheader

Point object

CSE351, Autumn 2024L27: Java and C - I

Subclassing

 Where does “z” go? At end of fields of Point
 Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor
 To override “samePlace”, use same vtable position
 Add new pointer at end of vtable for new method “sayHi”

23

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

CSE351, Autumn 2024L27: Java and C - I

Subclassing: Object Layout

24

New code for
samePlace

Old code for
constructor

sayHi tacked on at end Code for
sayHi

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

xvptr yheader

ThreeDPoint object
z

constructor samePlacevtable for ThreeDPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Autumn 2024L27: Java and C - I

code for Point()

code for Point’s samePlace()
Point vtable:

xvptr yheader

Point object

p ???

Dynamic Dispatch

25

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vtr[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object
z

ThreeDPoint vtable:

CSE351, Autumn 2024L27: Java and C - I

Inheritance and Overriding Methods

 In CSE12x/CSE14x, it may have seemed “magic” that
an inherited method could call an overridden method

 The “trick” in the implementation is this part:
p->vptr[i](p,q)

 In the body of the pointed-to code, any calls to (other)
methods of this will use p->vptr
 Dispatch determined by p, not the class that defined a

method

26

	Java and C (part I)�CSE 351 Autumn 2024
	Relevant Course Information
	Lab 5 Tips
	Roadmap
	Java (1995) vs. C (1972)
	Worlds Colliding
	Meta-point to this lecture
	Data in Java
	Data in Java: Arrays
	Data in Java: Arrays
	Data in Java: Characters & Strings
	Data in Java: Objects
	Pointer/reference fields and variables
	Pointers/References
	Casting in C (example from Lab 5)
	Type-safe casting in Java
	Type-safe casting in Java
	Java Object Definitions
	Java Objects and Method Dispatch
	Java Constructors
	Java Methods
	Subclassing
	Subclassing: Object Layout
	Dynamic Dispatch
	Inheritance and Overriding Methods

