YA UNIVERSITY of WASHINGTON

L25: Virtual Memory Il CSE351, Autumn 2024

Virtual Memory I

CSE 351 Autumn 2024

Instructor:
Ruth Anderson

Teaching Assistants:

Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

FIGURING OUT WHY ¥y HOME
SERVER KEERS RKUNNING OUT PLUGGING IT INTo A LIGHT TIMER

OF SWAP SPACE NDCRASHING: 0 IT REIB00TS EVERY 24 HOURS:
P l

SETTIREIL
SIIRFTRYIY

—_r_ "

1-10 HOURS 5 MINUTES

\WHY EVERYTHING L HAVE IS BROKEN

https://xkcd.com/1495/

https://xkcd.com/1495/

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Relevant Course Information

+» HW22 due Tonight, Monday (11/25) @ 11:59 pm
+» HW23 due Wednesday (11/27) @ 11:59 pm
+ No HW24

+» Lab 5 (on Mem Alloc) due Thurs (12/05) @ 11:59pm

" The most significant amount of C programming you will do
in this class — combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

®" Understanding the concepts first and efficient debugging
will save you lots of time

" Light style grading

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Ii

Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

= Unused VAs may not have a mapping

= VAs from different processes may rhap to same location in memory/disk

T~

Process 1’s Virtual
Address Space

Physical
Memory

Disk

_Process 2’s Virtual
Address Space

S riris

“Swap Space”

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

A System Using Physical Addressing

Main memory

0:

1:

2:

Physical address (PA) 3:

CPU > 4:
6:

7:

8:

M-1:

Data (int/float)

+» Used in “simple” systems with (usually) just one process:

= Embedded microcontrollers in devices Iike% elevators, and digital
picture frames T

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

A System Using Virtual Addressing

Main memory

0:
CPU Chip N\ 1:
irtual addre Physical address g
(VA) (PA) '
CPU — -> MMU > 4.
0x4100 0x4 5.
2 :
7‘ 6:
7:
8:
Memory Management Unit
M-1

Data (int/float)

+ Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Why Virtual Memory (VM)?

= Use as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk

+ Efficient ie of limited main memory (RAM)

- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

+» Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space

+ |solates address spaces (protection)

" One process can’t interfere with another’s memory
- They operate in different address spaces

= User process cannot access privileged information
Different sections of address spaces have different permissions

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Reading Review

+ Terminology:
= Paging: page size (P), page offset width (p) virtual page
number (VPN), physical page numbers (PPN)

= Page table (PT): page table entry (PTE), access rights (read,
write, execute)

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Review Questions A L@/\ e o]
. . Vil Pase A be
< Which terms from caching are most similar/analogous
to the new virtual memory terms?

» Options: block #, block size, cache line, cache set, index width,

management bits, offset width, tag width - o4y W [Plode 0@4-

" page size HOd(, Siz8 VM JvP N SRR U
Pa. |

= page offset width ~ blide st udih H

= virtual page number JJDo\z Vluw\oe;/

= physical page number HM{ huwh ¢~/ (¢ he éej'

" pagetableentry cadve |ine
= access rights)
menyonu b

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

VM and the Memory Hierarchy

+» Think of memaory (virtual or physical) as an array of bytes, now
L] L] (1
split into pages o= ey, P

= Pages are another unit of aligned memory (size is P = 2P bytes)

= Each virtual page can be stored in any physical page (no fra ment tion!)

No Wa&s Sace
« Pages of virtual memory are usually stored in physical megn“fory,
but sometimes spill to disk

Virtual memory Physical memory

Empty PP O

0
VP 0O | Unallocated
. > PP1

N ASK N ——

Z Unallocated i

N —

Empty

PP 2m-p-1

(s,dd) sa3ed |eaisAyd

Virtual pages (VP's)

VP 2mp-1

“Swap Space”

YA UNIVERSITY of WASHINGTON

Memory Hierarchy: Core 2 Duo

L25: Virtual Memory Il

CPU

CSE351, Autumn 2024

Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
! Cedie ~ame) ~8 GB !
11 14‘0"’@[2 1 Hal] Main | Pe
&> l-cache [~ unified T Memory .
a cache S 4
32 KB
i -
Re L1 g
g D-cache ‘

Throughput: 16 B/cycle
Latency: 3 cycles

8 B/cycle 2 B/cycle 1 B/30 cycles
A 14 cycles .1?1‘3 Crtc"es \m_'“'&';j—
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

10

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Virtual Memory Designh Consequences

Large page size: typically 4-8 KiB or 2-4 MiB
= Can Tma/up_to 1 GiB (for “Big Data” apps on big computers)
= Compared with 64-byte cache blocks

Fully associative (physical Memory IS Single se+)
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

Highly sophisticated, expensive replacement algorithms in OS
" Too complicated and open-ended to be implemented in hardware

\sler-
Write-back rather than write-through (fead< &ty pages)
= Really don’t want to write to disk every time we modify memory
= Some things may never end up on disk (e.g. stack for short-lived process)

11

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Why does VM work on RAM/disk?

+ Avoids disk accesses because of locality

= Same reason thatlLl/L2 /L3 cachg work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f i‘working set 'Qf one process < physical memory):
- Goo ance for one process (after compulsory misses)
= |If (working sets of all processes > physical memory):

- Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when VM——%—M“‘

12

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Virtual Memory (VM)

» Overview and motivation

» VM as a tool for caching

+~ Address translation

» VM as a tool for memory management
» VM as a tool for memory protection

13

YA UNIVERSITY of WASHINGTON

Address Translation

L25: Virtual Memory Il

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA) ’
CPU MMU > 4:
0x4100 0x4 5.
2 ;
7‘ 6:
7:
8:
Memory Management Unit
M-1

CSE351, Autumn 2024

Data (int/float)

14

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Address Translation: Page Tables
VPN wiA"’L\ ‘r\—P @>we l'\awt pr()ajej N VA Spac,e, paﬂe s\te Pl’)’"ef

. . — T) i
+» CPU-generated address can Ige split into:,, & p= Joygo P s
TS

'V\—pb

- r\/v——\
n-bitaddress: | Virtual Page Number | Page Offset
J\V\mlew.f +o- | ID(OC\(Aurber | block ot et]"ﬁ)f CG(J/\QJ

" Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

Has an entry for every virtual page

15

YA UNIVERSITY of WASHINGTON L25: Virtual Memory II

CSE351, Autumn 2024

Page Table Diagram

is page in RAM? Physzca':‘e;‘mry PhySig;if/age '
DRAM j
Page Table
Virtual page # (DRAM) VP1 PPO
vam PPN/Disk Addr VP2 PP 1
Dundiocste pagpreo: 0[0] nul_— op o
pre: 1(1 | PN O
prE2: 2| 1| PPH / — PP 3
o | PTE3: 3| 0 |ja) acdr ® -
pise i RAM pTE4: 4 [1 | DPN 7)./‘ Virtua memory
PTES: 5| 0O nuII - (DRAM/dISk)
O pose o disk PTEG: 0 [gisk o~
PTE 7:@‘ 1]pPN 2 o ~~)

Eage fable Lm Zn_P en'hne_v, - Y VP3
age tables stored in physical memory ‘\\
" Too big to fit elsewhere — managed by MMU & OS \‘* VP e

+» How many page tables in the system?
" One per process

16

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Page Table Address Translation
/c\ﬂan ed on Yo

CP 1 aa 'I‘CX"' st .
o Virtual address (VA) /
Page table 4
base register Virtual page number (VPN) ‘ Virtual page offset (VPO) n \9"}1
L (PTBR) [
_’__/
[
Page tablg?a\\ds('jclf:as)s Page table
for process)Valid PPN
Yolde o VPNesty [T = i
Valid bit = 0:
page notin memory €
(page fault)
v / v

Physical page number (PPN) / Physical page offset (PPO) m \oH’I

In most cases, the MMU can Physical address (PA) /
perform this translation
without software assistance

17

YA UNIVERSITY of WASHINGTON

L25: Virtual Memory Il

CSE351, Autumn 2024

Polling Question VA ﬁg@ ?m/év

PA T PPN g —Fhd

+» How many bits wide are the following fields?

" 16[KiB page¥ Size

' 48-bit virtual addresses

' 16 GiB physical memory
ote |n Ed Lessons

(A) 34 24
() 32 18
(C) 30 20

2 = 20

2— ZID — 2l B,)Jes M_&\f
R b
> ¢8 - ,({ =Y bt

18

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Page Hit

« Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO [O null | VP 1 PPO
(o VP 2 PP
Y N [w7 || 72
Ar VP 4 PP 3
SO0
blo Virtual memory
—> Q)| 1 (DRAM/disk)
(

r N s VP 3
7
Example: Page size = 4 KiB=7'"B ¢ p=I2kits= 3 hex Jigits N

Virtual Addr: |0x00 7/21 b Physig%/Addr: Ox 2 HOb b VP 6

VPN S ~_

(M ven: Ex @PPN: 2

YA UNIVERSITY of WASHINGTON

L25: Virtual Memory Il

CSE351, Autumn 2024

Page Fault

« Page fault: VM reference is NOT in physical memory

Virtual address

Page Table (DRAM)

Physical memory

Valid PPN/Disk Addr (DRAM)
PTEO [O null - VP 1 PP O
1 — | > VP 2
211 e VP 7
(33 0| C Q >
S 1 e / VP 4 PP 3
0 null .
0 e Virtual memory
PTE7 | 1 N (DRAM/disk)

Example: Page size = 4 KiB

Provide a virtual address request (in hex) that

results in this particular page fault:
P PABE Z9" iy Fhree

-

Virtual Addr: O)(O 0;__ ; _

hey & 5"\‘ t‘e":

VP 3

VP 6

20

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Reminder: Page Fault Exception

User writes to memory location int a[10001;
_ , int main () {
That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code OS Kernel code

exception: page fault _handle_page_fault:

movl % >
Create page and
returns load into memory

\ 4

Page fault handler must load page into physical memory
Returns to faulting instruction: mov is executed again!

= Successful on second try
21

YA UNIVERSITY of WASHINGTON

CSE351, Autumn 2024

L25: Virtual Memory Il

Handling a Page Fault (1)

+ Page miss causes page fault (an exception)

Virtual address

Page Table (DRAM)
Valid PPN/Disk Addr

Physical memory
(DRAM)

] wei PP O

VP 2

_ VP 7
VP 4 PP 3

PTEO| O null
| [1 —
2|1 o—
3> 0 q\
1 —=
0 null S
0 e
PTE7 [1 o~ < _

* VP 3

4 VP 6

Virtual memory
(DRAM/disk)

22

YA UNIVERSITY of WASHINGTON

Handling a Page Fault (2)

+~ Page miss causes page fault (an exception)

L25: Virtual Memory Il

PP 3

+ Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

Page Table (DRAM)

Physical memory

CSE351, Autumn 2024

Valid PPN/Disk Addr (DRAM)

PTEO [0 null — VP1

1 — | s VP 2

1 *—

VP 7
> 0 e /l

T P » VP4

0 null Virtual memory

0 o AW @ © (DRAM/disk)
PTE7 | 1 o -~ DN %ME\O,Z\

VP 3

VP 6

PP O

PP 3

Q)\.)r?re
back.
C&'\H’y

23

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Handling a Page Fault (3)

+~ Page miss causes page fault (an exception)
+ Page fault handler selects a victim to be evicted (here VP 4)

UpA ated
Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO | O null — VP1 PPO
1 — | > VP 2
1 o—
VP 7
L e —] VP 3 PP 3
Thvalidated > 0 e
0 null ™~ Virtual memory
0 o« X (DRAM/disk)
PTE7 [1 AU DA

Sso0 VP 4
4 VP 6

24

YA UNIVERSITY of WASHINGTON

Handling a Page Fault (4)

+~ Page miss causes page fault (an exception)

L25: Virtual Memory Il

+~ Page fault handler selects a victim to be evicted (here VP 4)

+» Offending instruction is restarted: page hit!

CSE351, Autumn 2024

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO | O null — VP1 PPO
/ 1 — | > VP 2
hit! L o VP 7
VP 3 PP 3
0 o
0 null >~ Virtual memory
0 « X (DRAM/disk)
PTE7 [1 MU DAY

VP 4

VP 6

25

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il

CSE351, Autumn 2024

Virtual Memory (VM)

+» Overview and motivation

» VM as a tool for caching

» Address translation

+» VM as a tool for memory management
» VM as a tool for memory protection

26

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

VM for Managing Multiple Processes

+ Key abstraction: each process has its own virtual address space
" |t can view memory as a simple linear array

+» With virtual memory, this simple linear virtual address space
need not be contiguous in physical memory
" Process needs to store data in another VP? Just map it to any PP!

0 0
Virtual 7T Physical
Address VP 2 —> |PP2| < Address naccessible
Space for ' ~ | Space +, Process 2
Pro7c\ess 1: N (DRAM)

Address
translation

~—1 (e.g., read-only
@k“mary code) shared

separate vietodl
wddvess spa(Ss and

page fubles 0
k_} Virtual — —> PP8
Address VP 2
Space for
Process 2:

N-1 M-1 27

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il CSE351, Autumn 2024

Simplifying Linking and Loading

Memory
% Linking Kernel virtual memory T invisible to
user code
= Each program has similar virtual User stack
address space (created at runtime) -
" Code, Data, and Heap always ’ (stack
ointer
start at the same addresses t P)
Memory-mapped region for
Loading shared libraries
= execve allocates virtual pages
for . text and .data sections T
] - : «—— brk
& creates PTEs marked as invalid Run-time heap
i created by malloc
" The .text and .data sections (: Y) \
iad b Read/write segment Loaded
are copied, page by page, on (.data, .bss) | from the
demand by the virtual memory EOE Y S —— executable
system (.init, .text, .rodata) file
0x400000)
Unused

0

28

YA UNIVERSITY of WASHINGTON

L25: Virtual Memory Il

CSE351, Autumn 2024

VM for Protection and Sharing

+~ The mapping of VPs to PPs provides a simple mechanism to
protect memory and to share memory between processes

= Sharing: map virtual pages in separate address spaces to the same
physical page (here: PP 6)

" Protection: process can’t access physical pages to which none of its
virtual pages are mapped (here: Process 2 can’t access PP 2)

Virtual
Address
Space for
Process 1:

Virtual
Address
Space for
Process 2:

0

N-1

N-1

Gee 0
PR
VP 1 N
VP 2 / —s| PP2
Address s
translati
_> PP8
VP 1
VP 2 %T
PAYC
table 2L
M-1

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

29

YA UNIVERSITY of WASHINGTON

L25: Virtual Memory Il

CSE351, Autumn 2024

Memory Protection Within Process

+» VM implements read/write/execute permissions

Q)C\—V‘o\

= Extend page table entries with permission bits manﬁgi?em+

" MMU checks these permission bits on every memory access

- If violated, raises exception and OS sends SIGSEGV signal to process

Process 1:
VP O:
VP 1:
VP 2:

Process 7j:
VP O:
VP 1:
VP 2:

(segmentation fault)

Valid READ WRITE EXEC PPN
Yes Yes No No PP 6
Yes Yes No Yes PP 4
Yes Yes Yes No PP 2

.

Valid READ WRITE EXEC PPN
Yes Yes Yes No PP 9
Yes Yes No No PP 6
Yes Yes Yes No PP 11

Physical
Address Space
—> PP2
PP 4
PP 6
PP 8
—| PP9
—{ pp11

30

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L25: Virtual Memory Il

Memory Review Question

+ What should the permission bits be for pages from
the following sections of virtual memory?

Section Read Write Execute
Stack]] O
Heap ! L O
_t-Static Data 1] ®

—
O
o
5
E

Literals

O
O don'k :Hh) 1 ((m\\, inSinuedions)
Cole .SLM\\& l)& w«hﬂc

[A

Instructions

31

	Virtual Memory II�CSE 351 Autumn 2024
	Relevant Course Information
	Mapping
	A System Using Physical Addressing
	A System Using Virtual Addressing
	Why Virtual Memory (VM)?
	Reading Review
	Review Questions
	VM and the Memory Hierarchy
	Memory Hierarchy: Core 2 Duo
	Virtual Memory Design Consequences
	Why does VM work on RAM/disk?
	Virtual Memory (VM)
	Address Translation
	Address Translation: Page Tables
	Page Table Diagram
	Page Table Address Translation
	Polling Question
	Page Hit
	Page Fault
	Reminder: Page Fault Exception
	Handling a Page Fault (1)
	Handling a Page Fault (2)
	Handling a Page Fault (3)
	Handling a Page Fault (4)
	Virtual Memory (VM)
	VM for Managing Multiple Processes
	Simplifying Linking and Loading
	VM for Protection and Sharing
	Memory Protection Within Process
	Memory Review Question

