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Relevant Course Information

+» HW22 due Tonight, Monday (11/25) @ 11:59 pm
+» HW23 due Wednesday (11/27) @ 11:59 pm
+ No HW24

+» Lab 5 (on Mem Alloc) due Thurs (12/05) @ 11:59pm

" The most significant amount of C programming you will do
in this class — combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

®" Understanding the concepts first and efficient debugging
will save you lots of time

" Light style grading
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Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

= Unused VAs may not have a mapping

= VAs from different processes may rhap to same location in memory/disk

T~

Process 1’s Virtual
Address Space

Physical
Memory

Disk

_Process 2’s Virtual
Address Space

S riris

“Swap Space”
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A System Using Physical Addressing

Main memory

0:

1:

2:

Physical address (PA) 3:

CPU > 4:
6:

7:

8:

M-1:

Data (int/float)

+» Used in “simple” systems with (usually) just one process:

= Embedded microcontrollers in devices Iike% elevators, and digital
picture frames T
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A System Using Virtual Addressing

Main memory

0:
CPU Chip N\ 1:
irtual addre Physical address g
(VA) (PA) '
CPU — -> MMU > 4.
0x4100 0x4 5.
2 :
7‘ 6:
7:
8:
Memory Management Unit
M-1

Data (int/float)

+ Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science
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Why Virtual Memory (VM)?

= Use as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk

+ Efficient ie of limited main memory (RAM)

- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

+» Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space

+ |solates address spaces (protection)

" One process can’t interfere with another’s memory
- They operate in different address spaces

= User process cannot access privileged information
Different sections of address spaces have different permissions
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Reading Review

+ Terminology:
= Paging: page size (P), page offset width (p) virtual page
number (VPN), physical page numbers (PPN)

= Page table (PT): page table entry (PTE), access rights (read,
write, execute)
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Review Questions A L@/\ e o]
. . Vil Pase A be
< Which terms from caching are most similar/analogous
to the new virtual memory terms?

» Options: block #, block size, cache line, cache set, index width,

management bits, offset width, tag width - o4y W [ Plode 0@4-

" page size HOd(, Siz8 VM JvP N SRR U
Pa. |

= page offset width ~ blide st udih H

= virtual page number JJDo\z Vluw\oe;/

= physical page number HM{ huwh ¢~/ (¢ he éej'

" pagetableentry  cadve |ine
= access rights )
menyonu b
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VM and the Memory Hierarchy

+» Think of memaory (virtual or physical) as an array of bytes, now
L] L] ( 1
split into pages o= ey, P

= Pages are another unit of aligned memory (size is P = 2P bytes)

= Each virtual page can be stored in any physical page (no fra ment tion!)

No Wa&s Sace
« Pages of virtual memory are usually stored in physical megn“fory,
but sometimes spill to disk

Virtual memory Physical memory

Empty PP O

0
VP 0O | Unallocated
. > PP1

N ASK N ——

Z Unallocated i

N —

Empty

PP 2m-p-1

(s,dd) sa3ed |eaisAyd

Virtual pages (VP's)

VP 2mp-1

“Swap Space”
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Memory Hierarchy: Core 2 Duo

L25: Virtual Memory Il

CPU

CSE351, Autumn 2024

Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
! Cedie ~ame ) ~8 GB !
11 14‘0"’@[ 2 1 Hal] Main | Pe
&> l-cache [~ unified T Memory .
a cache S 4
32 KB
i -
Re L1 g
g D-cache ‘

Throughput: 16 B/cycle
Latency: 3 cycles

8 B/cycle 2 B/cycle 1 B/30 cycles
A 14 cycles .1?1‘3 Crtc"es \m_'“'&';j—
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x
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Virtual Memory Designh Consequences

Large page size: typically 4-8 KiB or 2-4 MiB
= Can Tma/up_to 1 GiB (for “Big Data” apps on big computers)
= Compared with 64-byte cache blocks

Fully associative (physical Memory IS Single se+)
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

Highly sophisticated, expensive replacement algorithms in OS
" Too complicated and open-ended to be implemented in hardware

\sler-
Write-back rather than write-through  (fead< &ty pages)
= Really don’t want to write to disk every time we modify memory
= Some things may never end up on disk (e.g. stack for short-lived process)

11
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Why does VM work on RAM/disk?

+ Avoids disk accesses because of locality

= Same reason thatlLl/L2 /L3 cachg work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f i‘working set 'Qf one process < physical memory):
- Goo ance for one process (after compulsory misses)
= |If (working sets of all processes > physical memory):

- Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when VM——%—M“‘

12
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Virtual Memory (VM)

» Overview and motivation

» VM as a tool for caching

+~ Address translation

» VM as a tool for memory management
» VM as a tool for memory protection

13
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Address Translation

L25: Virtual Memory Il

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA) ’
CPU MMU > 4:
0x4100 0x4 5.
2 ;
7‘ 6:
7:
8:
Memory Management Unit
M-1

CSE351, Autumn 2024

Data (int/float)

14
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Address Translation: Page Tables
VPN wiA"’L\ ‘r\—P @>we l'\awt pr()ajej N VA Spac,e, paﬂe s\te Pl’)’"ef

. . — T ) i
+» CPU-generated address can Ige split into:,, & p= Joygo P s
TS

'V\—pb

- r\/v——\
n-bitaddress: | Virtual Page Number | Page Offset
J\V\mlew.f +o- | ID(OC\( Aurber | block ot et ]"ﬁ)f CG(J/\QJ

" Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

Has an entry for every virtual page

15



YA UNIVERSITY of WASHINGTON L25: Virtual Memory II

CSE351, Autumn 2024

Page Table Diagram

is page in RAM? Physzca':‘e;‘mry PhySig;if/age '
DRAM j
Page Table
Virtual page # (DRAM) VP1 PPO
vam PPN/Disk Addr VP2 PP 1
Dundiocste pagpreo: 0[0]  nul_— op o
pre: 1(1 | PN O
prE2: 2| 1| PPH / — PP 3
o | PTE3: 3| 0 |ja) acdr ® -
pise i RAM pTE4: 4 [ 1 | DPN 7)./‘ Virtua memory
PTES: 5| 0O nuII - (DRAM/dISk)
O pose o disk PTEG: 0 [gisk o~
PTE 7:@‘ 1]pPN 2 o ~~ )

Eage fable Lm Zn_P en'hne_v, - Y VP3
age tables stored in physical memory ‘\\
" Too big to fit elsewhere — managed by MMU & OS \‘\* VP e

+» How many page tables in the system?
" One per process

16
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Page Table Address Translation
/c\ﬂan ed on Yo

CP 1 aa 'I‘CX"' st .
o Virtual address (VA) /
Page table 4
base register Virtual page number (VPN) ‘ Virtual page offset (VPO) n \9"}1
L (PTBR) [
\_’__/
[
Page tablg?a\\ds('jclf:as)s Page table
for process )Valid PPN
Yolde o VPNesty [T = i
Valid bit = 0:
page notin memory €
(page fault)
v / v

Physical page number (PPN) / Physical page offset (PPO) m \oH’I

In most cases, the MMU can Physical address (PA) /
perform this translation
without software assistance

17
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Polling Question VA ﬁg@ ?m/év

PA T PPN g —Fhd

+» How many bits wide are the following fields?

" 16[KiB page¥ Size

' 48-bit virtual addresses

' 16 GiB physical memory
ote |n Ed Lessons

(A) 34 24
() 32 18
(C) 30 20

2 = 20

2— ZID — 2l B,)Jes M_&\f
R b
> ¢8 - ,({ =Y bt

18
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Page Hit

« Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO [ O null | VP 1 PPO
(o VP 2 PP
Y N [ w7 || 72
Ar VP 4 PP 3
SO0
blo Virtual memory
—> Q)| 1 (DRAM/disk)
(

r N s VP 3
7
Example: Page size = 4 KiB=7'"B ¢ p=I2kits= 3 hex Jigits N

Virtual Addr: |0x00 7/21 b Physig%/Addr: Ox 2 HOb b VP 6

VPN S ~_

(M ven: Ex @PPN: 2
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Page Fault

« Page fault: VM reference is NOT in physical memory

Virtual address

Page Table (DRAM)

Physical memory

Valid PPN/Disk Addr (DRAM)
PTEO [ O null - VP 1 PP O
1 — | > VP 2
211 e VP 7
(33 0| C Q >
S 1 e / VP 4 PP 3
0 null .
0 e Virtual memory
PTE7 | 1 N (DRAM/disk)

Example: Page size = 4 KiB

Provide a virtual address request (in hex) that

results in this particular page fault:
P PABE Z9" iy Fhree

-

Virtual Addr: O)(O 0;__ ; _

hey & 5"\‘ t‘e":

VP 3

VP 6

20
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Reminder: Page Fault Exception

User writes to memory location int a[10001;
_ , int main () {
That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl  $0xd,0x8049d10
User code OS Kernel code

exception: page fault _handle_page_fault:

movl % >
Create page and
returns load into memory

\ 4

Page fault handler must load page into physical memory
Returns to faulting instruction: mov is executed again!

= Successful on second try
21
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Handling a Page Fault (1)

+ Page miss causes page fault (an exception)

Virtual address

Page Table (DRAM)
Valid PPN/Disk Addr

Physical memory
(DRAM)

]  wei PP O

VP 2

_ VP 7
VP 4 PP 3

PTEO| O null
| [ 1 —
2|1 o—
3> 0 q\
1 —=
0 null S
0 e
PTE7 [ 1 o~ < _

* VP 3

4 VP 6

Virtual memory
(DRAM/disk)

22
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Handling a Page Fault (2)

+~ Page miss causes page fault (an exception)

L25: Virtual Memory Il

PP 3

+ Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

Page Table (DRAM)

Physical memory

CSE351, Autumn 2024

Valid PPN/Disk Addr (DRAM)

PTEO [0 null  — VP1

1 — | s VP 2

1 *—

VP 7
> 0 e /l

T P » VP4

0 null Virtual memory

0 o AW @ © (DRAM/disk)
PTE7 | 1 o -~ DN %ME\O,Z\

VP 3

VP 6

PP O

PP 3

Q)\.)r?re
back.
C&'\H’y

23
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Handling a Page Fault (3)

+~ Page miss causes page fault (an exception)
+ Page fault handler selects a victim to be evicted (here VP 4)

UpA ated
Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO | O null  — VP1 PPO
1 — | > VP 2
1 o—
VP 7
L e — ] VP 3 PP 3
Thvalidated > 0 e
0 null ™~ Virtual memory
0 o« X (DRAM/disk)
PTE7 [ 1 AU DA

Sso0 VP 4
4 VP 6

24
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Handling a Page Fault (4)

+~ Page miss causes page fault (an exception)

L25: Virtual Memory Il

+~ Page fault handler selects a victim to be evicted (here VP 4)

+» Offending instruction is restarted: page hit!

CSE351, Autumn 2024

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO | O null  — VP1 PPO
/ 1 — | > VP 2
hit! L o VP 7
VP 3 PP 3
0 o
0 null >~ Virtual memory
0 « X (DRAM/disk)
PTE7 [ 1 MU DAY

VP 4

VP 6

25
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Virtual Memory (VM)

+» Overview and motivation

» VM as a tool for caching

» Address translation

+» VM as a tool for memory management
» VM as a tool for memory protection

26
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VM for Managing Multiple Processes

+ Key abstraction: each process has its own virtual address space
" |t can view memory as a simple linear array

+» With virtual memory, this simple linear virtual address space
need not be contiguous in physical memory
" Process needs to store data in another VP? Just map it to any PP!

0 0
Virtual 7T Physical
Address VP 2 —> |PP2| < Address naccessible
Space for ' ~ | Space  +, Process 2
Pro7c\ess 1: N (DRAM)

Address
translation

~—1 (e.g., read-only
@k“mary code) shared

separate  vietodl
wddvess spa(Ss and

page fubles 0
k_} Virtual — —> PP8
Address VP 2
Space for
Process 2:

N-1 M-1 27
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Simplifying Linking and Loading

Memory
% Linking Kernel virtual memory T invisible to
user code
= Each program has similar virtual User stack
address space (created at runtime) -
" Code, Data, and Heap always ’ (stack
ointer
start at the same addresses t P )
Memory-mapped region for
Loading shared libraries
= execve allocates virtual pages
for . text and .data sections T
] - : «—— brk
& creates PTEs marked as invalid Run-time heap
i created by malloc
" The .text and .data sections ( : Y ) \
iad b Read/write segment Loaded
are copied, page by page, on (.data, .bss) | from the
demand by the virtual memory EOE Y S —— executable
system (.init, .text, .rodata) file
0x400000 )
Unused

0

28
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VM for Protection and Sharing

+~ The mapping of VPs to PPs provides a simple mechanism to
protect memory and to share memory between processes

= Sharing: map virtual pages in separate address spaces to the same
physical page (here: PP 6)

" Protection: process can’t access physical pages to which none of its
virtual pages are mapped (here: Process 2 can’t access PP 2)

Virtual
Address
Space for
Process 1:

Virtual
Address
Space for
Process 2:

0

N-1

N-1

Gee 0
PR
VP 1 N
VP 2 / —s| PP2
Address s
translati
_> PP8
VP 1
VP 2 %T
PAYC
table 2L
M-1

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

29
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Memory Protection Within Process

+» VM implements read/write/execute permissions

Q)C\—V‘o\

= Extend page table entries with permission bits manﬁgi?em+

" MMU checks these permission bits on every memory access

- If violated, raises exception and OS sends SIGSEGV signal to process

Process 1:
VP O:
VP 1:
VP 2:

Process 7j:
VP O:
VP 1:
VP 2:

(segmentation fault)

Valid READ WRITE EXEC PPN
Yes Yes No No PP 6
Yes Yes No Yes PP 4
Yes Yes Yes No PP 2

.

Valid READ WRITE EXEC PPN
Yes Yes Yes No PP 9
Yes Yes No No PP 6
Yes Yes Yes No PP 11

Physical
Address Space
—>  PP2
PP 4
PP 6
PP 8
—| PP9
—{ pp11

30
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Memory Review Question

+ What should the permission bits be for pages from
the following sections of virtual memory?

Section Read Write Execute
Stack ] ] O
Heap ! L O
_t-Static Data 1 ] ®

—
O
o
5
E

Literals

O
O don'k :Hh) 1 ((m\\, inSinuedions )
Cole .SLM\\& l)& w«hﬂc

[A

Instructions

31
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