YW UNIVERSITY of WASHINGTON

Processes
CSE 351 Autumn 2024

L23: Processes CSE351, Autumn 2024

Instructor: Teaching Assistants:
Ruth Anderson Alexandra Michael

Chendur Jayavelu
Nahush Shrivatsa
Renee Ruan

Sean Siddens

Connie Chen Chloe Fong
Joshua Tan Nikolas McNamee
Naama Amiel Neela Kausik
Rubee Zhao Samantha Dreussi

Waleed Yagoub

REFRESH TYPE
SOFT REFRESH

NORMAL REFRESH
HARD REFRESH
HARDER REFRESH
HARDEST REFRESH

EXAMPLE SHORTCUTS
GMAIL BUTTON

F5, CTRLR, 3R
CTRL-F5, CTR-{}, 38R

CTRL-{}-HYPER -ESC-R-F5

CTR-3E 22+ #-B-F5-F-5-
EsC-(0-0- -2 -5CROLL LOCK

http://xkcd.com/1854/

EFFECT
REQUESTS UPDATE WITHIN JAVASCRIPT

REFRESHES PAGE

REFRESHES PAGE INCLUDING CACHED FILES
REMOTELY (YCLES POWER To DATACENTER
INTERNET STARTS OVER FROM ARPANET

http://xkcd.com/1854/

YW UNIVERSITY of WASHINGTON CSE351, Autumn 2024

Relevant Course Information

+» HW21 due Tonight, Wednesday (11/20) @ 11:59 pm
% Lab 4 due Friday (11/22) @ 11:59 pm

" Cache parameter puzzles and code optimizations
+ HW22 due Friday (11/22) @ 11:59 pm
+» HW23 due Monday (11/25) @ 11:59 pm
+ Lab 5 (on Mem Alloc) coming soon!

" The most significant amount of C programming you will do
in this class — combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

®" Understanding the concepts first and efficient debugging
will save you lots of time

" Light style grading

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Reading Review

+» Terminology:
= Exceptional control flow, event handlers
" Operating system kernel
" Exceptions: interrupts, traps, faults, aborts

" Processes: concurrency, context switching, fork-exec model,
process ID

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Leading Up to Processes

+ System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Control Flow

L)

« So far: we’ve seen how the flow of control changes
as a single program executes

Reality: multiple programs running concurrently

" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

Exceptional control flow is basic mechanism used for:
" Transferring control between processes and OS
= Handling I/0 and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
" Implementing concurrency

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Control Flow

+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

" This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

instr,

instr,
time instr,

instr
<shutdown>

YW UNIVERSITY of WASHINGTON L23: Processes

Altering the Control Flow

+» Up ta_.now, two ways to change control flow:

@ onditional abd unconditional)
andreturn)’

= Both react to changes in program state

+ Processor also needs to react to changes in system state
= Unix/Linux user hit the keyboard

= User clicks on a different application’s window on the screen

= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= System timer expires

% Can jumps and procedure calls achieve this?

CSE351, Autumn 2024

——T . .
= No —the systemneeds mechanisms for “exceptional” control flow!

YW UNIVERSITY of WASHINGTON L23: Processes

Exceptional Control Flow

+ Exists at all levels of a computer system

+» Low level mechanisms
= Exceptions

- Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

Implemented using a combination of hardware and OS software
+ Higher level mechanisms

= Process context switch
Implemented by OS software and hardware timer
= Signals
Implemented by OS software
- We won’t cover these — see CSE451 and CSE/EE474

CSE351, Autumn 2024

YW UNIVERSITY of WASHINGTON L23: Processes

CSE351, Autumn 2024

Exceptions (Review)

+» An exception is transfer of control to the operating system (OS)
. / e —
kernel in response to some event (i.e. change in processor state)

= Kernel is the memory-resident part of the OS
= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Cﬁ!ﬁ OS Kernel Code

event ——— current_instr v exception

>
next_instr exception processing by
exception handler, then:
* return to current_instr,

* return to next_instr, OR
e abort

+ How does the system know where to jump to in the OS?

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

This is extra

Exception Table (non-testable)

material

+» A jump table for exceptions (also called Interrupt Vector Table)

= Each type of event has a unique
exception number k

= k =index into exception table
(a.k.a interrupt vector)

code for
" Handler k is called each time exception handler 0
exception k occurs Exception .
Table .
exception handler 1
0 s /
‘ /\u\,\‘))W&\e 1 :// code for
\(e ") ’\' 2 exception handler 2
| herme
V\’\Of\ S cee
AN O n-1 o .
ExceTtion EeLer
P exception handler n-1
numbers

10

YW UNIVERSITY of WASHINGTON

L23: Processes

CSE351, Autumn 2024

Exception Table (Excerpt)

Exception Number
0

13

14

18

32-255

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

This is extra
(non-testable)
material

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

11

YA UNIVERSITY of WASHINGTON L23: Processes

CSE351, Autumn 2024

Leading Up to Processes

+» System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

12

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Asynchronous Exceptions (Interrupts)

+» Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

+» Examples:
= |/O interrupts
Hitting Ctrl-C on the keyboard
- Clicking a mouse button or tapping a touchscreen

- Arrival of a packet from a network

- Arrival of data from a disk
Every few milliseconds, an external timer chip triggers an interrupt
Used by the OS kernel to take back control from user programs

13

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Synchronous Exceptions (Review)

+» Caused by events that occur as a result of executing an
instruction:
" Traps
Intentional: transfer control to OS to perform some function

- Examples: [system calls| breakpoint traps, special instructions
Returns control to “next” instruction (" cuwedt " instr did U T s SUWDWHD)

" Faults
Unintentional but possibly recoverable

- Examples: ‘pagefault?, segment protection faults, integer divide-by-zero
exceptions

Either re-executes faulting (“current”) instruction or aborts
= Aborts t i re coverable C £ gt rewverable

Unintentional and unrecoverable
- Examples: parity error, machine check (hardware failure detected)

- Aborts current program

14

YW UNIVERSITY of WASHINGTON

L23: Processes

System Calls

+ Each system call has a unique ID number

+ Examples for Linux on x86-64:

Number

Name
read
write
open
close
stat
fork
execve
exit

kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

CSE351, Autumn 2024

15

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Traps Example: Opening File

+» Usercalls open (filename, options)
+» Calls __open function, which invokes system call instruction syscall

00000000000e5d70 < open>:
e5d79: b8 02 00 00 00 mov S$0x2,%eax # open is syscall 2
ebd7e: 0f 05 Ssyscalll # return value in %rax
e5d80: 48 3d 01 fO ff/f;,;>cmp SOxfffffffff£f£f££001, $rax
ebdfa: c3 retq

User code OS Kernel code m %rax contains syscall number

m Otherargumentsin $rdi,
: o o o o o

-7$yscallv Except/on R 5Ir'S1, ordX, orlO, or8, 51 9

mp . m Returnvaluein $rax
Returns m Negative value is an error

corresponding to negative
errno

v

16

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Fault Example: Page Fault

+ User writes to memory location int a[1000];
» That portion (page) of user’s memory mt[rggé? 0 1;
. . a = 7
is currently on disk \
i
80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10
(»novma’ MoV, \’U&
User code OS Kernel code address ne uwently

N Menor Y

exception: page fault handle_page_fault:

movl| % >
Create page and

v

+ Page fault handler must load page into physical memory
+ Returns to faulting instruction: @ov is executed againt

® Successful on second try\/

17

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Fault Example: Invalid Memory Reference

int a[10007];
int main () {
al[5000] = 13;

} Y,

80483b7: c7 05 60 €3 04 08 0d movl $0xd, 0x804e360

User Process 0S

L l exception: page fault handle_page fault:

. detect invalid address
signal process

A

Page fault handler detects invalid address
Sends SIGSEGV signal to user process

User process exits with “segmentation fault”
18

YW UNIVERSITY of WASHINGTON

L23: Processes

Processes

+ Processes and context switching
+ Creating new processes
" fork(),exec* (),andwait ()

« Zombies

CSE351, Autumn 2024

19

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

What is a process ? (Review) it'sanillusion!

4)
Process 1

Memory

Stack

Heap

Data

. Code
CPU o ;}){0
G

Registers | 3rip

&Sga(\

Disk

Chrome.exe k‘_: ?r‘oﬁ VaVv\

20

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

What is a process? (Review)

@,
0.0

@,
0.0

@,
0.0

Another abstraction in our computer system
" Provided by the OS
= (OS uses a data structure to represent each process

" Maintains the interface between the program and the
underlying hardware (CPU + memory)

What do processes have to do with exceptional
control flow?

= Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

What is the difference between:

= A processor? A program? A process?

21

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Processes (Review)

+ A process is an instance of a running program

" One of the most profound ideas in computer science

+ Process provides each program with two key

. Memory
abstractions:
. Stack
" |ogical control flow Ht::p
- Each program seems to have exclusivfs use of the CPU #\ Data
. Provided by kernel mechanism called context switching Code
" Private address space PU
- Each program seems to have echustfuse of main mﬁmry Registors
- Provided by kernel mechanism called virtual memory

22

L23: Processes CSE351, Autumn 2024

YW UNIVERSITY of WASHINGTON

It’s an illusion!

What is a process?

Computer

”CPU”

CPU

Process 3
Process 2
“Memory” ‘
Process 4

stack Process 1 ‘;

eap L

Data ”CPU" ”Memory"
Code Stack
. M Heap
CPU Data

llcpull

Disk

/Applications/

Chrome.exe

Slack.exe

PowerPoint.exe

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

What is a process? It’s an illusion!

Computer

Process 3
Process 2
“Memory” ‘ P 4
rocess
Stack Process 1 ;
Heap A
Data “CPU” “Memory”
— Stack
Heap
“CPU Data
“CPU” “CPU”
Operating
System
CPU
Disk —
/Applications/
Chrome.exe Slack.exe PowerPoint.exe

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

+» Computer runs many processes simultaneously
= Applications for one or more users]
- Web browsers, email clients, editors, ... /

= Background tasks 1
- Monitoring network & I/O devices J

User - \leve |

ho{ﬂ\/ I((vae\/Oj - lt\;@\

25

L23: Processes

CSE351, Autumn 2024

YW UNIVERSITY of WASHINGTON

Multiprocessing: The Reality

Stack
Heap
Data
Code

Saved
registers

emory
Stack

Heap

Stack

Heap

Data

Code

Saved
registers

+ Single processor executes multiple processes concurrently

" Process executions interleaved, CPU runs one at a time

= Address spaces managed by virtual memory system (later in course)
= Execution context (register values, stack, ...) for other processes saved in

memory

26

YW UNIVERSITY of WASHINGTON

L23: Processes

Multiprocessing (Review)

\egisters

« Context switch
1)

Save current registers in memory

Memory
. Stack Stack Stack
Heap Heap Heap
Data Data olsle Data
Code Code Code
: Saved Saved Saved
. /'Yegisters registers registers
~ /
——A¢t
:\ CPU

CSE351, Autumn 2024

27

YW UNIVERSITY of WASHINGTON

L23: Processes

CSE351, Autumn 2024

Multiprocessing (Review)

/7
0‘0

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ces Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

Context switch

1)
2)

Save current registers in memory

Schedule next process for execution

(05 deci Aes>

28

YW UNIVERSITY of WASHINGTON

L23: Processes

Multiprocessing (Review)

/7
0‘0

Memory
Stack Stack Stack
Heap Heap Heap
Data Data . ces Data
Code Code : Code
Saved : < Saved
registers : registers . registers
CPU :
Registers |ZI .

Context switch

1) Save current registers in memory

2) Schedule next process for execution

3) Load saved registers and switch address space

CSE351, Autumn 2024

29

YW UNIVERSITY of WASHINGTON

L23: Processes

CSE351, Autumn 2024

Multiprocessing: The (Modern) Reality

Memory
: Stack Stack Stack
Heap Heap Heap
Data Data cos Data
Code Code Code
Saved Saved Saved
registers registers registers
cPU CPU- 11 &+ Multicore processors
Registers Registers | | = Multiple CPUs (“cores”) on single chip

= Share main memory (and some of the
caches)

= Each can execute a separate process
- Kernel schedules processes to cores
- Still constantly swapping processes

30

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Assume only one CPU

Concurrent Processes

« Each process is a logical control flow

« Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

" Otherwise, they are sequential

+» Example: (running on single cor

" Concurrent: A&B,A&C

" Seq uentia I: B & C Process A Process B Process C
51'ou:f;,k
B I S‘thg $
ti m e A 777777777777777777 % S‘{»OPB 777777777777777777777777777777777 S *arTC 777777 —[77777777777777777777
c 1 — 3 {
F A
<ton —
STope

31

YW UNIVERSITY of WASHINGTON L23: Processes

User’s View of Concurrency

CSE351, Autumn 2024

Assume only one CPU

+ Control flows for concurrent processes are physically

disjoint in time

" CPU only executes instructions for one process at a time

+» However, the user can think of concurrent processes
as executing at the same time, in parallel

Process A Process B Process C

User View

q

time

Process A Process B Process C

g
3 \\
v
Oy mMinds £l

these in

32

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Assume only one CPU

Context Switching

+ Processes are managed by a shared chunk of OS code
called the kernel

"= The kernel is not a separate process, but rather runs as part of a user

process
e, Memory
| Kemel virtual memory |T invisible to
OxFFFF FFFF FFFF — user code
<« |In x86-64 Linux: (created at run time) . _
I Yorsp (stack pointer)
= Same address in each process -

refers to same Shared Memory mapped region for
i hared librari
memory location shared libraries

!

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the

executable file

Read-only code and data

0x0000 0040 0000

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Assume only one CPU

Context Switching (Review)

+ Processes are managed by a shared chunk of OS code
called the kernel

"= The kernel is not a separate process, but rather runs as part of a user
process

+» Context switch passes control flow from one process to
another and is performed using kernel code

Process A Process B

user code

e —

kernel code } context switch

time B
user code

kernel code } context switch

user code

34

YW UNIVERSITY of WASHINGTON L23: Processes

Processes

» Processes and context switching

» Creating new processes
"/ fork ())and exec* ()

» Ending a process
" ex1t(),walit(),waitpid()
= Zombies

CSE351, Autumn 2024

35

YW UNIVERSITY of WASHINGTON

L23: Processes

Creating New Processes & Programs

Ve

Process 1

“Memory”

Stack

Heap

Data

fork ()

»

Code

llcpul)

Registers

exec™ ()

Ve

Process 2

“Memory”

Stack

Heap

Data

Code

”CPU”

Registers

CSE351, Autumn 2024

Chrome.exe

36

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Creating New Processes & Programs

+ fork-exec model (Linux):
" fork () creates a copy of the current process

= exec®() replaces the current process’ code and address
space(with the code for a different program

+ Family: execv, execl, execve, execle, execvp, execlp

= (fork ()| andfexecve ()| are system calls

Lo irdentiona), Syhc)\rov\ouﬁ exce(ﬂ’?ons ‘—'?

« Other system calls for process management:
" getpid()

" exit ()

" walt (),waitpid()

37

w UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

fork: Creating New Processes

B fork (void)

= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

zhi\a

= Returns 0 to the child process

= Returns child’s|process ID (PID)[to the parent process

+ Child is almost identical to parent: ﬁ/\

= Child gets an identical 56 & fork ret = Wﬁﬁée&b
(but separate) copy of the | ¢ “(fork ret == 0) { it 50+SO
parent’s virtual address printf ("hello from child\n");
space } else {

= Child has a different PID printf ("hello from parent\n");
than the parent /

+» forkisunique (and often confusing) because it is called once

but returns “twice”
38

YW UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Understanding fork ()

y 0

Process X (pavént; PID X) Process Y (cHild; PID/Y,
E— —————— /
» pid t fork ret/= fork(); »\ id t (fork ret/= fork();
IT (fork—Tet == 0) { if (forkeet == 0} —
printf ("hello from child\n"); printf ("hello from child\nili/>

} els —=_ | } else
printf ("hello from parent\n"); printf ("hello from parent\n");
}

39

YW UNIVERSITY of WASHINGTON

L23: Processes

CSE351, Autumn 2024

Understanding fork ()

Process X (parent; PID X)

Process Y (child; PIDY)
» pid t fork ret = fork(); » pid t fork ret = fork();
if (fork ret == 0) { if (fork ret == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }
fork ret=Y fork ret=0
pid t fork ret = fork(); pid t fork ret = fork();
» if (fork ret == 0) { » if (fork ret == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }

40

YW UNIVERSITY of WASHINGTON

L23: Processes

Understanding fork ()

»

Process X (parent; PID X)

pid t fork ret =

fork () ;
if

(fork ret == 0) {

printf ("hello from child\n");
} else ({

printf ("hello from parent\n");
}

fork ret=Y

pid t fork ret =

fork () ;
if

(fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

}

hello from parent

»

CSE351, Autumn 2024

Process Y (child; PIDY)

pid t fork ret =
if

fork () ;
(fork ret == 0) {

printf ("hello from child\n");

} else {

}

printf ("hello from parent\n");

fork ret=0

}

pid t fork ret =
if (fork ret == 0) {

fork () ;

printf ("hello from child\n");

} else {

printf ("hello from parent\n");

hello from child

Which one appears first?

41

W UNIVERSITY of WASHINGTON L23: Processes CSE351, Autumn 2024

Summary

+» EXceptions
" Events that require non-standard control flow

" Generated asynchronously (interrupts) or synchronously
(traps and faults)

= After an exception is handled, either:
- Re-execute the current instruction
- Resume execution with the next instruction
- Abort the process that caused the exception

<« Processes

" Only one of many active processes executes at a time on a
CPU, but each appears to have total control of the processor

= OS periodically “context switches” between active processes

42

	Processes�CSE 351 Autumn 2024
	Relevant Course Information
	Reading Review
	Leading Up to Processes
	Control Flow
	Control Flow
	Altering the Control Flow
	Exceptional Control Flow
	Exceptions (Review)
	Exception Table
	Exception Table (Excerpt)
	Leading Up to Processes
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions (Review)
	System Calls
	Traps Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Processes
	What is a process ? (Review)
	What is a process? (Review)
	Processes (Review)
	What is a process?
	What is a process?
	Multiprocessing: The Illusion
	Multiprocessing: The Reality
	Multiprocessing (Review)
	Multiprocessing (Review)
	Multiprocessing (Review)
	Multiprocessing: The (Modern) Reality
	Concurrent Processes
	User’s View of Concurrency
	Context Switching
	Context Switching (Review)
	Processes
	Creating New Processes & Programs
	Creating New Processes & Programs
	fork: Creating New Processes
	Understanding fork()
	Understanding fork()
	Understanding fork()
	Summary

