
CSE351, Autumn 2024L22: Memory Allocation III

Memory Allocation III
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

https://xkcd.com/835/

https://xkcd.com/835/

CSE351, Autumn 2024L22: Memory Allocation III

Relevant Course Information

 HW20 due Tonight, Monday (11/18) @ 11:59 pm
 HW21 due Wednesday (11/20) @ 11:59 pm
 Lab 4 due Friday (11/22) @ 11:59 pm
 Cache parameter puzzles and code optimizations

 HW22 due Friday (11/22) @ 11:59 pm

2

CSE351, Autumn 2024L22: Memory Allocation III

Allocation Policy Tradeoffs

 Data structure of blocks on lists
 Implicit (free/allocated), explicit (free), segregated (many

free lists) – others possible!

 Placement policy: first-fit, next-fit, best-fit
 Throughput vs. amount of fragmentation

 When do we split free blocks?
 How much internal fragmentation are we willing to tolerate?

3

CSE351, Autumn 2024L22: Memory Allocation III

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

4

CSE351, Autumn 2024L22: Memory Allocation III

Memory Allocation

 Dynamic memory allocation
 Introduction and goals
 Allocation and deallocation (free)
 Fragmentation

 Explicit allocation implementation
 Implicit free lists
 Explicit free lists (Lab 5)
 Segregated free lists

 Implicit deallocation: garbage collection
 Common memory-related bugs in C

5

CSE351, Autumn 2024L22: Memory Allocation III

Reading Review

 Terminology:
 Garbage collection: mark-and-sweep
 Memory-related issues in C

6

CSE351, Autumn 2024L22: Memory Allocation III

What is Garbage Collection?

7

 Garbage Collection: automatically freeing space on
the heap when no longer needed
 Part of an implicit memory allocator

• application never explicitly frees memory!

 Free any memory no longer reachable by the program’s local
variables
 Runs periodically throughout the lifetime of your program

void foo() {
int* p = (int*) malloc(128);
return; /* p block is now garbage! */

}

CSE351, Autumn 2024L22: Memory Allocation III

Which Languages have Garbage Collection?
 Common in implementations of functional languages, scripting

languages, and modern object oriented languages:
 Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage
 Not part of the standard library

 Why not? – C’s flexibility comes at a cost
• Hard to tell what is a pointer and what isn’t (casting)
• Pointers don’t always point to the beginning of blocks (pointer

arithmetic)

8

CSE351, Autumn 2024L22: Memory Allocation III

Garbage Collection

 How does the memory allocator know when memory
can be freed?
 In general, we cannot know what is going to be used in the

future since it depends on conditionals
 But, we can tell that certain blocks cannot be used if they

are unreachable (via pointers in registers/stack/globals)

 Memory allocator needs to know what is a pointer
and what is not – how can it do this?
 Sometimes with help from the compiler

9

CSE351, Autumn 2024L22: Memory Allocation III

Memory as a Graph

 We view memory as a directed graph
 Each allocated heap block is a node in the graph
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, stack locations, global variables)

10

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Autumn 2024L22: Memory Allocation III

Garbage Collection

 Dynamic memory allocator can free blocks if there are
no pointers to them

 How can it know what is a pointer and what is not?

 We’ll make some assumptions about pointers:
 Memory allocator can distinguish pointers from non-

pointers
 All pointers point to the start of a block in the heap
 Application cannot hide pointers

(e.g. by coercing them to a long, and then back again)

11

CSE351, Autumn 2024L22: Memory Allocation III

Classical GC Algorithms
 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

 For more information:
 Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of

Automatic Memory Management, CRC Press, 2012.
 Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic

Memory, John Wiley & Sons, 1996.
12

CSE351, Autumn 2024L22: Memory Allocation III

Mark and Sweep Collecting
 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the header of each block
 Mark: Start at roots and set mark bit on each reachable block
 Sweep: Scan all blocks and free blocks that are not marked

13

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT
free list pointers

CSE351, Autumn 2024L22: Memory Allocation III

Assumptions For a Simple Implementation

 Application can use functions to allocate memory:
 b=new(n) returns pointer, b, to new block with all locations cleared
 b[i] read location i of block b into register
 b[i]=v write v into location i of block b

 Each block will have a header word (accessed at b[-1])

 Functions used by the garbage collector:
 is_ptr(p) determines whether p is a pointer to a block
 length(p) returns length of block pointed to by p, not including

header
 get_roots() returns all the roots

14

Non-testable
Material

CSE351, Autumn 2024L22: Memory Allocation III

Mark

 Mark using depth-first traversal of the memory graph

15

ptr mark(ptr p) { // p: some word in a heap block
if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i<length(p); i++) // recursively call mark on

mark(p[i]); // all words in the block
return;

}

Before mark

root

After mark Mark bit set

Non-testable
Material

CSE351, Autumn 2024L22: Memory Allocation III

Sweep

 Sweep using sizes in headers

16

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap
while (p < end) { // while not at end of heap

if (markBitSet(p)) // check if block is marked
clearMarkBit(p); // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated
free(p); // free the block

p += length(p); // adjust pointer to next block
}

}

Non-testable
Material

After mark Mark bit set

After sweep freefree

CSE351, Autumn 2024L22: Memory Allocation III

Conservative Mark & Sweep in C
 Would mark & sweep work in C?
 is_ptr determines if a word is a pointer by checking if it points to an

allocated block of memory
 But in C, pointers can point into the middle of allocated blocks

(not so in Java)
• Makes it tricky to find all allocated blocks in mark phase

 There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:
• Every reachable node correctly identified as reachable, but some unreachable

nodes might be incorrectly marked as reachable
 In Java, all pointers (i.e. references) point to the starting address of an

object structure – the start of an allocated block
17

header
ptr

Non-testable
Material

CSE351, Autumn 2024L22: Memory Allocation III

Memory-Related Perils and Pitfalls in C

18

Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size

CSE351, Autumn 2024L22: Memory Allocation III

Q1: Find That Bug! (Slide 19)

19

char s[8];
int i;

gets(s); /* reads "123456789" from stdin */

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2024L22: Memory Allocation III

Q2: Find That Bug! (Slide 20)

20

int* foo() {
int val = 0;

return &val;
}

void bar() {
int* addr = foo();
*addr = 351;

}

Error Prog stop Fix:
Type: Possible?

Recent versions of gcc will set a returned
pointer to something on the stack = NULL.
Dereferencing NULL would stop the program.

CSE351, Autumn 2024L22: Memory Allocation III

Q3: Find That Bug! (Slide 21)

• N and M defined elsewhere (#define)

21

int** p;

p = (int**)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
p[i] = (int*)malloc(M * sizeof(int));

}

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2024L22: Memory Allocation III

Q4: Find That Bug! (Slide 22)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)
• N defined elsewhere (#define)

22

/* return y = Ax */
int* matvec(int** A, int* x) {

int* y = (int*)malloc(N*sizeof(int));
int i, j;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;
}

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2024L22: Memory Allocation III

Q5: Find That Bug! (Slide 23)
 The classic scanf bug
 int scanf(const char *format, ...)

23

int val;
...
scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

CSE351, Autumn 2024L22: Memory Allocation III

Q6: Find That Bug! (Slide 24)

24

x = (int*)malloc(N * sizeof(int));
// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));
// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2024L22: Memory Allocation III

Q7: Find That Bug! (Slide 25)

25

x = (int*)malloc(N * sizeof(int));
// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2024L22: Memory Allocation III

(Not in Ed) Find That Bug! (Slide 26)

26

typedef struct L {
int val;
struct L *next;

} list;

void foo() {
list *head = (list *) malloc(sizeof(list));
head->val = 0;
head->next = NULL;

// create and manipulate the rest of the list
...

free(head);
return;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Autumn 2024L22: Memory Allocation III

Don’t Just Stare at Your Code to Debug

 Staring at code until you think you spot a bug is
generally not an effective way to debug!
 Of course it looks logically correct to you – you wrote it!
 Language like C doesn’t abstract away memory – it’s part of

your program state that you need to keep track of
• Your code will only get longer and more complicated in the future:

there’s too much to try to keep track of mentally
• You won’t be able to just trace through it in your head from beginning

like in CSE 12x

27

CSE351, Autumn 2024L22: Memory Allocation III

Better Debugging Strategies

 Instead, start with bad/unexpected behavior to guide
your search
 This is why we like code that crashes early
 Search bottom-up and not top-down (exhaustive search will

take forever)
 e.g., use backtrace on seg faults as a first step

 Memory bugs/“errors” can be especially tricky because
they often don’t result in explicit errors or program
stoppages

28

CSE351, Autumn 2024L22: Memory Allocation III

Dealing With Memory Bugs

 Make use of all of the tools available to you:
 Pay attention to compiler warnings and errors
 Use debuggers like GDB to track down runtime errors

• Good for bad pointer dereferences, bad with other memory bugs

 valgrind is a powerful debugging and analysis utility for
Linux, especially good for memory bugs
• Checks each individual memory reference at runtime (i.e., only

detects issues with parts of code used in a specific execution)
• Can catch many memory bugs, including bad pointers, reading

uninitialized data, double-frees, and memory leaks

29

CSE351, Autumn 2024L22: Memory Allocation III

What about Java or ML or Python or …?

 In memory-safe languages, most of these bugs are
impossible
 Cannot perform arbitrary pointer manipulation
 Cannot get around the type system
 Array bounds checking, null pointer checking
 Automatic memory management

 But one of the bugs we saw earlier is possible. Which
one?

30

CSE351, Autumn 2024L22: Memory Allocation III

Memory Leaks with GC
 Not because of forgotten free — we have GC!
 Unneeded “leftover” roots keep objects reachable
 Sometimes nullifying a variable is not needed for correctness

but is for performance
 Example: Don’t leave big data structures you’re done with in a

static field

31

Root nodes

Heap nodes

not reachable
(garbage)

reachable

	Memory Allocation III�CSE 351 Autumn 2024
	Relevant Course Information
	Allocation Policy Tradeoffs
	More Info on Allocators
	Memory Allocation
	Reading Review
	What is Garbage Collection?
	Which Languages have Garbage Collection?
	Garbage Collection
	Memory as a Graph
	Garbage Collection
	Classical GC Algorithms
	Mark and Sweep Collecting
	Assumptions For a Simple Implementation
	Mark
	Sweep
	Conservative Mark & Sweep in C
	Memory-Related Perils and Pitfalls in C
	Q1: Find That Bug! (Slide 19)
	Q2: Find That Bug! (Slide 20)
	Q3: Find That Bug! (Slide 21)
	Q4: Find That Bug! (Slide 22)
	Q5: Find That Bug! (Slide 23)
	Q6: Find That Bug! (Slide 24)
	Q7: Find That Bug! (Slide 25)
	(Not in Ed) Find That Bug! (Slide 26)
	Don’t Just Stare at Your Code to Debug
	Better Debugging Strategies
	Dealing With Memory Bugs
	What about Java or ML or Python or …?
	Memory Leaks with GC

