L21: Memory Allocation Il CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON

Memory Allocation i
CSE 351 Autumn 2024

Instructor:
Ruth Anderson

Teaching Assistants:

Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

MY ACCESS To RESOURCES ON [SUBTECT] OVER TIME:

1985 1930 1995 2000 2005 2010 205 2020

BOOK. ON
SUBJECT
[suBTECT].PDF
SITE GOES DOWUN, BACKEND
[SUBTECT] WJEB DATABASE DATA NOT ON mma
[SuBTECT] MOBLE APP mm Ru?&
(LOcAL UNIVERSITY PROJELT)
[SUBTELT] ANALYSIS SOFTLIARE |~—§5' icwm '?m%
INTERACTIVE [SUBTECT] CD-ROM G L o ACEUIER

LIBRARY MICROFILM
[SUBTECT] COLLECTION

T UNSETTUNG TO REALIZE HOU QUICKLY DIGITAL RESOURCES
CAN DISAPPEAR WITHOUT ONGOING LIORK TO MAINTAIN THEM.

http://xkcd.com/1909/

http://xkcd.com/1444/

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Relevant Course Information

+» HW19 due tonight, Friday (11/15) @ 11:59 pm
" Lab 4 preparation

+» HW20 due Monday (11/18) @ 11:59 pm
+» HW21 due Wednesday (11/20) @ 11:59 pm
+» Lab 4 due Friday (11/22) @ 11:59 pm

" Cache parameter puzzles and code optimizations

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

Reading Review

+» Terminology:

Allocation strategies: first fit, next fit, best fit
Allocating a block: splitting, minimum block size
Freeing a block: coalescing

Boundary tags: header and footer

Explicit free list

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

= 8-byte word

Implicit Free List Example

X/

+» Each block begins with header (size in bytes and allocated bit)

2 Sequence of blocks in heap (size|allocated):
16|O 32|1 64|O 32|1

33 ¢ actual heder Adta

3211
sv % uz 128 AN

16 bytes = 2 word alignment

Start o heap

Free word

2

\ B2t

0 ke 3e

Allocated word

Allocated word
unused

+» 16-byte alignment for payload
= Address of payload must be a multiple of the alignment
= May require initial padding (internal fragmentation)
"= Note size: paddingis considered part of previous block

Special one-word marker (0| 1) marks end of list
= Zero size is distinguishable from all other blocks

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

(*p) gets the block
header

Implicit List: Finding a Free Block | ¢o& 1 exractstne
- < allocated bit

(*p & -2) extracts

X FirSt . le the size

" Search list fro@ oose first free block that fits:

= heap start;

whlle ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) { // too small cquivaledt fo poiter arfhmetid witl,
p=p+ (*p & -2); // go to next block (UNSCALED +) Shgr¥

} // plpoints to selected block or end
AT T er ,WF_EKl_'L

O(n)
= Can take time linear in total number of blocks
" |n practice can cause “splinters” at beginning of list

heap start

P Free word

321

Allocated word

Allocated word
unused

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Implicit List: Finding a Free Block

+» Next fit

= Like first-fit, but search list starting where previous search
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

+ Best fit

= Search the list, choose the best free block: large enough
AND with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Usually worse throughput

W UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

sl
° ° Q{:\e(DN
Polling Question fageet®
payload A B/C/ D
+ Which allocation strategy and requests size / AV
o / 4/
remove external fragmentation in this /
Heap? B3 was the last fulfilled request. >0 4/522
V . Sr:ace /// ///
= Vote in Ed Lessons beThreerr 10
° 1:‘ des
(A) Best-fit: 30

malloc (50), malloc (50)
(B) First-fit:

malloc (50), malloc (30) >0
(C) Next-fit:

malloc (30),malloc (50)
(D) Next-fit: !

Start of heap
malloc (50),malloc (30)

10

50

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Implicit List: Allocating in a Free Block

\— new alocared / new 'rvee
+ Allocating in a free block: splitting WQ \

= Since allocated space might be smaller than free space, we
might want to split the block

Assume ptr points to a free block and has unscaled pointer arithmetic

void spllt(ptr b, int bytes) { // bytes = desired block size

O int newsize = ((bzvte\SJr15) >> 4) << 4% // round up to multiple of 16

® int oldsize = *b; // why not mask out low bit?

() *b = newsize; // initially unallocated

@) if (newsize < oldsize)

(3 * (b+newsize) = 01d¥ize - newsize; // set length in remaining

} // part of block (UNSCALED +)

header
malloc (24) : L 161 L48|0 L“ Free word

Is);]lrlkt) (b, f;2f§)24+8) b Allocated word
allocate (b) /\/\/\‘ Newly-allocated

Lot a=l 1611 32|t 1610 116t word

8

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Implicit List: Freeing a Block

+» Simplest implementation just clears “allocated” flag
" void free (ptr /) {* (p-WORD) &= -2;}
" But can lead to “false fragmentation”

/\PLM}\/\

0 16/0
161 32!1 | 161 Free word

P Allocated word
/\/\/’\ Block of interest

free (p) 16/1 [32)0 16/0 6|1
\i
malloc (40) Oops! There is enough free space, but

the allocator won’t be able to find it

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Implicit List: Coalescing with Next

+ Join (coalesce) with next block if also free

1611 |32/t (6D |16/

/f & ; Free word
b P next Allocated word
/\/_\ Block of interest
free (p) 160, [48/0) 1“%;.““
\7 ~~ logically gone
)
void free (ptr p) {8 // p points to payload
ptr b = p - WORD; // b points to block header
*b &= -2; a2 // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*nexq & 1) == 0) // if next block is not allocated,
*b += *néxt; // add its size to this block
}

+ How do we coalesce with the preceding block? .. cn't
Cuvren’ﬂ)/

10

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Implicit List: Bidirectional Coalescing

«» Boundary tags [Knuth73]
= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
" Important and general technique!

32/0 32/01321, 32/1l18/0 48/0/32/1 32/1
=N

4
Format of eader size a| a=1: allocated block
allocated and 4 a =0: free block
free blocks:
payloao_l and size: block size (in bytes)
Boundary tags padding
| payload: application data
Footer size a| (allocated blocks only)

11

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free

Block being freed —

Allocated Free Allocated Free

12

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Constant Time Coalescing

Case 1 m1l 1 m1l 1 Case 2 m1l 1 m1l 1
ml 1 ml 1 m1l 1 m1l 1
n 1 n 0 n 1 n+m?2 0
— —
n 1 n 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+m?2 0
Case 3 m1 0 n+ml 0 Case 4 m1 0 n+ml+m2 | 0
m1 0 m1 0
n 1 n 1
— —
n 1 n+ml 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+ml+m2 | 0

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Implicit Free List Review Questions

C\Mﬂv\‘\—

o .\J ;’q—-\\ ng—h\ /’/’_—2_’\\ -3
£ N > n-

b2 32/0B2/1 3211810 48/0@ 30/
REANG RSPt TN el

R

«» What is the block header? What do we store and how?
Stores wfo abot block sizeot blode , is-allocated?
tlom B‘}'o‘(hecder

+ What are boundary tags and why do we need them?
\rxeao\ev and ‘Fod*er (SQMC M‘PO) SO \we Gn +mVE‘YS€ 1\3‘\’ in em\er A;r‘edbn

CPGY_HC\A‘aY\Y 'For COG‘ esa "3)
+ When we coalesce free blocks, how many neighboring blocks

do we need to check on either side? Why is this?
)\)«S+ 1 — O\dj(x(EV_" free blodks shoad l’ﬁ\:c a\mu\y \oeev\ Cgo\‘ek,e)\

If | want to check the size of the n-th block forward from the
current block, how many memory accesses do | make?

N neekh veod awveed blocks header s well & header o Aurget block
’to gé Hhe f.?c

14

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

= 8-byte word (free)

Keeping Track of Free Blocks

= 8-byte word (allocated)

C N\ : : :
1) Img//affree list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

- ’—h ——————
- 'V A »

40 32 48 16

————

Gﬁxplicitfree list among only the free blocks, using pointers

/\

0 32 48 16

—3) Segregated free list
= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
15

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il

CSE351, Autumn 2024

D(plla):ree Lists

Allocated block: Free block:
size a size a
< S next
— -payload and e
padding
size a size a

(same as implicit free list)

+ Use list(s) of free blocks, rather than implicit list of all blocks
" The “next” free block could be anywhere in the heap

- So we need to store next/previous pointers, not just sizes
= Since we only track free blocks, so we can use “payload” for pointers
= Still need boundary tags (header/footer) for coalescing

16

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Doubly-Linked Lists

va\ue

N prev { velf ML
‘7% Linear Root ‘/\O ‘/)\\[/’ ‘/\‘ @’ 0
(poivter) \)
= Needs head/root pointer strudt

" First node prev pointer is NULL
= Last node next pointer is NULL
" Good for first-fit, best-fit

Start ‘/\ @ ‘O/’ ‘/L\\y (\\/\’\'
+ Circular to ey e \ /

in Tree \igt

= Still have pointer to tell you which node to start with
®= No NULL pointers (term condition is back at starting point)

" Good for next-fit, best-fit

17

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Explicit Free Lists

+ Logically: doubly-linked list

A — B — C
\ n N [l W\ [}
“hode O node 1” Nnode 2

+ Physically: blocks can be in any order

—
1

/ Forward (next) links

A B

32pe7puB2 |32 32 48qebtl ~_ | |48|32preceami32]32l} et 32| fotiosing

‘K ¢ \%ack (prev) links

previous /nead’ Hod:s Gre parT of free |i.s‘lL
precedins/fo“owin) blocks are phy.n‘cal neighber s

18

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Allocating From Explicit Free Lists (w. splitting)

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before
f Y\OJ@ -f_\:l'if\ ‘Id’ o "
s';\' selected
feee Wock
node nin it allocated / gree_
4
hok’!le inlist | @ %
After |
(with splitting) ® 4 pom‘\ef) urAa}eA;
2 in vwd(n
I A wode m-|
|\~ node |
st node N n \\f\'
. l Same '““mkr 6" ‘Y\oie
= malloc(..) I e

19

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Allocating From Explicit Free Lists (w. full allocation)

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before rode el °

—

Shore ;‘C"C
node n
store heve
node "_\:*__ o
After .
(f{llly allocated) stl node n-\ L pointeqs up dated

1 fever node in Free list

now the has node n

= malloc(...)

20

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

%IFO (last-in-first-out) policy
- Insert freed block at the beginning (head) of the free list
- Pro: simple and constant time

- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
- Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)
- Con: requires linear-time search
- Pro: studies suggest fragmentation is better than the alternative

21

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4

Pf8600\7"3 — | Allocated Allocated Free Free
Block being freed —
followi’fg——-’? Allocated Free Allocated Free

+» Neighboring free blocks are already part of the free
list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

4

» How do we tell if a neighboriniblock is free?
con still wse ‘f-b\mdaf\/ ‘\'&j; (d\m‘l' need 1o sear ’f\mc l i}‘}). cher Zmrkw’n ong r\)”"ue
(sce Lodo‘S) 22

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Boundary tags not]

Freeing with LIFO Policy (Case 1) [Shown' but don'

forget about them!

Before free (@)

node O

Root LI O

Insert the freed block at the root of the list

After QO«MH'\L\M\ ho)e " ‘Fr@

hew node A
Root ¥ O ‘i g -

hew node _Q

23

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 2) [Shown' but don'

Before free (@)

f

Qo

« Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root ' O

o ¢
_

24

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 3) [Shown' but don'

Before free (@)
®

t

Qo

« Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root H -

® <
@O

25

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 4) [Shown' but don'

Before free (@)
® ®

Root iI II Qo

O
» Splice preceding and following blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

After

Root H

26

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Do we always need the boundary tags?

Allocated block: Free block:
Size a Size a
next
payload and A=Y
padding

VAT v :

(same as implicit free list)

+ Lab 5 suggests no...

D)

27

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

Explicit List Summary

+» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks
- Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

- Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

28

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

BONUS SLIDES

The following slides are about the Seglist Allocator, for
those curious. You will NOT be expected to know this
material.

29

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

= 8-byte box (free)

Keeping Track of Free Blocks

= 8-byte box (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

P i ’—'h ’_——5\

-~ 'V A, L'

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

a0 — 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
30

YA UNIVERSITY of WASHINGTON

’7{/7 N

L21: Memory Allocation Il

Segregated List (SegList) Allocators

« Each size class of blocks has its own free list
+» Qrganized as an array of free lists

Size class
(in bytes)

\ 4
\ 4

!

(—\7 32 > > —
™
A 48-64 > —
> 80-inf —

+» Often have separate classes for each small size
» For larger sizes: One class for each two-power size

CSE351, Autumn 2024

31

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

SeglList Allocator

«» Have an array of free lists for various size classes

+~ To allocate a block of size n:
= Search appropriate free list for block of sizem = n

= |f an appropriate block is found:
- [Optional] Split block and place free fragment on appropriate list

" If no block is found, try the next larger class
- Repeat until block is found
+ If no block is found:
= Request additional heap memory from OS (using sbrk)

" Place remainder of additional heap memory as a single free

block in appropriate size class
32

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

SeglList Allocator

«» Have an array of free lists for various size classes

+ To free a block:
= Mark block as free
" Coalesce (if needed)
" Place on appropriate class list

33

YA UNIVERSITY of WASHINGTON L21: Memory Allocation Il CSE351, Autumn 2024

SeglList Advantages

+» Higher throughput

= Search is log time for power-of-two size classes

+» Better memory utilization

= First-fit search of seglist approximates a best-fit search of
entire heap

= Extreme case: Giving every block its own size class is no
worse than best-fit search of an explicit list

" Don’t need to use space for block size for the fixed-size
classes

34

	Memory Allocation II�CSE 351 Autumn 2024
	Relevant Course Information
	Reading Review
	Implicit Free List Example
	Implicit List: Finding a Free Block
	Implicit List: Finding a Free Block
	Polling Question
	Implicit List: Allocating in a Free Block
	Implicit List: Freeing a Block
	Implicit List: Coalescing with Next
	Implicit List: Bidirectional Coalescing
	Constant Time Coalescing
	Constant Time Coalescing
	Implicit Free List Review Questions
	Keeping Track of Free Blocks
	Explicit Free Lists
	Doubly-Linked Lists
	Explicit Free Lists
	Allocating From Explicit Free Lists (w. splitting)
	Allocating From Explicit Free Lists (w. full allocation)
	Freeing With Explicit Free Lists
	Coalescing in Explicit Free Lists
	Freeing with LIFO Policy (Case 1)
	Freeing with LIFO Policy (Case 2)
	Freeing with LIFO Policy (Case 3)
	Freeing with LIFO Policy (Case 4)
	Do we always need the boundary tags?
	Explicit List Summary
	Slide Number 29
	Keeping Track of Free Blocks
	Segregated List (SegList) Allocators
	SegList Allocator
	SegList Allocator
	SegList Advantages

