YW UNIVERSITY of WASHINGTON

L20: Memory Allocation |

Memory Allocation |

CSE 351 Autumn 2024

Instructor:
Ruth Anderson

Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

Adapted from
https://xkcd.com/1093/

CSE351, Autumn 2024

WHEN Wil WE FORGET?

BASED oN US OENSUs BUREAY
NATRONAL FOPULATION [ROTECTIONS

FEAIMING WE DoNT REMEMBER CULTURPAL
EVEMTS FROM BEFDRE AGE S ekl

Br THIS | THE MPJORTY OF AMERICANS
YEAR: | WAL BE TOOYONG To REMEMBER:
2006 | RETURNV OF THE 7ELY RELERSE
2007 | THE FIRST APRLE MACINTESH
2018 | New (oxe
08 | CHALEMGER
2070 | CHERNOBYL
221 | BLAK MONDAY
2022 | THE RERGAN PRESIDENGY
2075 | THE [ERUN WAL
2024 | HAMMERTME
2025 | THE SoVIET UNION
20% | THE LA RIOTS
2027 | (ORENA BOBRITT
2028 | THE FORREST GUMP RELERSE.
2c2% | THE RWANDAN GENOCIDE
2030 | OF SIMPSEN'S TRIAL
3% | ATIME BEFORE FACERAODK,
039 | WIs Z lovE THE Ds
2040 | HURRICANE KATRINA
2041 | THE PLANET Pwmo
2042 | THE FIRST iFHONE

sou7 | ANYTHING EVBARRASGING
YOU 0O ToDAY

https://xkcd.com/627/

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Relevant Course Information

+» HW18 due Wednesday (11/13) @ 11:59 pm
+» HW19 due Friday (11/15) @ 11:59 pm

" Lab 4 preparation
% Lab 4 due Friday (11/22) @ 11:59 pm

" Cache parameter puzzles and code optimizations
= Some discussion in Section tomorrow (11/14)

CSE351, Autumn 2024

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Reading Review

+» Terminology:
®= Dynamically-allocated data: malloc, free

= Allocators: implicit vs. explicit allocators, heap blocks,
implicit vs. explicit free lists

" Heap fragmentation: internal vs. external

YW UNIVERSITY of WASHINGTON

L20: Memory Allocation |

Multiple Ways to Store Program Data

CSE351, Autumn 2024

<+ Static global dataf—\
»int array[1024];

Fixed size at compile-time

= Entire lifetime of the program
(loaded from executable)

= Portion is read-only
(e.g. string literals)

« Stack-allocated data

" Local/temporary variables

int* foo(int n) {
/%>int tmp;
_>int local arrayl[n];

int* dyn =
(int*)malloc (n*sizeof (int)) ;
return dyn?%

}

Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

<+ Dynamic (heap) data

= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Memory Allocation

o

Dynamic memory allocation

" Introduction and goals

= Allocation and deallocation (free)
" Fragmentation

o

Explicit allocation implementation

" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

Implicit deallocation: garbage collection

*

o

Common memory-related bugs in C

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Dynamic Memory Allocation (Review)

+ Programmers usg dynamic memory a

N
locatorste —__
—

acquire memory at run time

" For data structures whose size
(or lifetime) is known only at runtime

" Manages the heap segment of memory

+ Types of allocators

(

(

|

User stack)
fr— T‘
Heap (viamalloc) >
W

Initialized data (. data)
Program text (. text)

0

= Explicit allocator: programmer allocates and frees space

- Exampleymallodand freein

—

Implicit allocator: programmer only allocates space (no free)
- Example: garbage collection in Java, Caml, and Lisp

// —_—

\
S New

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Dynamic Memory Allocation

+ Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

®" What happens if we run out of heap space?
- Ask the Operating System for more memory and increment brk!

ﬁrgP F_:_L User stack
t ‘ «— Top of heap

Heap (viamalloc) (brk ptr)

Uninitialized data (.bss)
Initialized data (. data)
Program text (. text)

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Allocating Memory in C (Review)

\include <stdlib.h>4/§

o:~670i@yélloc (size t size)

m ates a continuous block of size bytes of uninitialized memory

——

" size tisatypedef foran unsigned 8-byte integer

= Returns a pointer to the beginning of the allocated block
Returns NULL if allocation failed (also sets errno) or size==
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
= Different blocks not necessarily adjacent

+» Good practices:
" int* ptr = (1nt*) malloc(n*sizeof (1nt));
sizeof makes code more portable (ints are not the same size on all machines)

- void* is implicitly cast into any pointer type; explicit typecast will help you catch
coding errors when pointer types don’t match

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Allocating Memory in C (Review)

+ Needto #include <stdlib.h>
» void* malloc(size t size)
= Allocates a continuous block of size bytes of uninitialized memory

" size tisatypedef foran unsigned 8-byte integer

= Returns a pointer to the beginning of the allocated block
Returns NULL if allocation failed (also sets errno) or size==
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
_ Diffe%ocksnot necessarily adjacent

+ Related functions: —
" void* calloc(size_t nitems, size t size)
- “Zeros out” allocated block
" void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)

" void* sbrk (intptr t increment)
Used internally by allocators to grow or shrink the heap

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Freeing Memory in C (Review) @pe{?)

+ Needto #include <stdlib.h>

ozogoid free (void* p) >

= Releases whole bl ' o by p back to the pool of available memory

= Pointer p must be the address originally returned by m/c/realloc (i.e.
beginnﬁ‘g’of the block), otherwise system exception raised

"= Don’t call free on a block that has already been released

/—

= No action occurs if you call: free on a NULL pointer

=[Does not change the value of p (will still point to the deallocated memory)
- Good practicetosetp = NULL after freeing

10

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Shkele \%?f;/iL

Memory Allocation Example in C ©
/ / SEWAEER]

void foo(int n, int m) {
int 1, *p;
——p = (int*) malloc(n*sizeof (int)); /* allocate block of nints */

if (p == NULL) { /* check for allocation error */
perror ("malloc") ;
exit (0) ;
}
__t+— for (i=0; i<n; i++) /* initialize int array */
pli] = 1; G

A~ /* addspace for mints to end of p block */
(int*) realloc(p) (n+m) *sizeof (1int)) ;

if == NULL) { /* check for allocation error */
perror "realloc")°
ex1t
(i=n; 1 < n+m; i++) / * initialize new spaces */
p [i] = 1i;
or (1=0; i<n+m; 1i++) /* print new array */
printf ("$d\n", pl[il);
> free(pi; /* freep */
> = NULL; /* good practice to set p to NULL after free */

11

YW UNIVERSITY of WASHINGTON

Notation

L20: Memory Allocation |

CSE351, Autumn 2024

=1 word = 8 bytes

+» We will draw memory divided into words
" Each word is 64 bits = 8 bytes

® Allocations will be in sizes that are a multiple of words

(i.e. multiples of 8 bytes)

®" Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook @

/

~~ N\

Heap () ())
\ v) N—— w N———
Allocated block Free block

— Commm—
32 bytes 24 bytes

Allocated word

12

YW UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Allocation Example

= 8-byte word

pl = malloc(32)

p2 = malloc (40)

p3 = malloc (48)

A /NN

free (p2)

—— [E———

l__,AeFmA; on allotator—

pr4 = malloc(16)

P\ q,cemevd' Po'u‘cy
77T T 7

Q. malloc 32>

4

13

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Implementation Interface (Review)

+ Applications
>' Can issue arbitrary sequence of malloc and free requests

\

" Must never access memory not currently allocated

" Must never free memory not currently allocated
« Also must only use free with previously malloc’ed blocks

« Allocators

Can’t control number or size of allocated blocks
" Must respond immediatelytomalloc (contt rearder or biictfer)

= Must allocate blocks from free memory Cblocks cant overlap)

= Must align blocks so they satisfy all alignment requirements

.—/

= Can’t move the allocated blocks (detrpmostation net allsed)

oulh borek your portea .

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Performance Goals (Review)

+» @oals: Given some sequence of malloc and free
requests Ry, Ry, ..., Ry, ..., R,,_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

N\

1) Throughput A C‘S() :r&%+y

= Number of completed requests per unit time

—

= Example:

- If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

15

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Performance Goals

+ Definition: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P;,
is the sum of currently allocated payloads

+ Definition: Current heap size H,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

“hink Car@‘@(b "

2) Peak Memory Utilization

= Defined as U;, = (m%cx P;)/H, after k+1 requests
L=<

" Goal: maximize utilization for a sequence of requests
" Why is this hard? And what happens to throughput?

16

W UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Fragmentation (Review)

« Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

®" Two types: internal and external

+~ Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

«» Now referring to wasted space in the heap inside or
between allocated blocks

17

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L20: Memory Allocation |

Internal Fragmentation
/

« For a given block, internal fragmentation occurs if

payload is smaller than block mslloc(13)
P\ block
-

\V
Internal

—
Internal
fragmentation — | payload H'61’)7%/ . fragmentation

» Causes: e -

o Paddingﬁgnment purposes
" QOverhead of maintaining heap data structures (inside block,
outside payload)

= Explicit policy decisions (e.g. return a big block to satisfy a
small request) faste, thraghpet +o nst indidually size evy block

+ Easy to measure because only depends on past
requests

18

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

= 8-byte word

External Fragmentation

« For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
= Thatis, the aggregate payload is non-continuous

= Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

pl = malloc (32)

p2 = malloc (40)

p3 = malloc (48)

free (p2) //

p4 = malloc (48) Oh no! (WhaWnow?) /[_\/

«» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become
problematic

19

W UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Polling Question

+» Which of the following statements is FALSE?
= Vote in Ed Lessons

A.
B.
C.

/(
/r

Temporary arrays should not be allocated on the
Heap Should allocate oN —h\e S’T&C\(

malloc returns an address of a block that is
i i Wocates only; inticizot
filled with random data ***% %3 "o infiafization

Peak memory utilization is a measure of both

° o ceaale lmd\
internal and external fragmentation @:if, P:z

oy
%D.

An allocation failure will cause your program to
Stop \')us'(' returns NULL

20

W UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Implementation Issues

+» How do we know how much memory to free given
just a pointer?

+» How do we keep track of the free blocks?

+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

21

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
- This word is often called the header field or header

= Requires an extra word for every allocated block

cefurneh odd ress fo .('\‘B

p0</’ t start &szlmd
ni)
w‘/'\‘%\
p0 = mallo 40
block size data

(nd size of poyled)

free (p0)

L> red header ¢ -8,
'FY‘EQ ‘H‘Af Mu()l\ $ Pace

22

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

= 8-byte word (free)

Keeping Track of Free Blocks _ 8 byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

- — -y -y,
/” =~ /’ \\ /” 5\\
- S A LN

401\ \V/@ |48 16
] = _____j
O\(M pomeeP

2) Explicit free list among only the free blocks, using pointers
m‘? (\ivx\:e& List!)
po\ncr

40 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

address is muttige sf §=0L1000
e o o e.g. with 8-byte alignment,
Implicit Free Lists possible values for size:
00001000 = 8 bytes
; . 00010000 = 16 bytes
+ For each block we need: size, is-allocated? | 00011000 - 24 bytes

L wed :
\/ o rl\:'\'

= Could store using two words, but wasteful - ¢

+ Standard trick
= |f blocks are alighed, some low-order bits of size are always 0O

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

" When reading size, must remember to mask out this bit!

8 bytes
A
//_\ —
Format of [size ?)a = 1: allocated block If x is first word (header):
allocated and a=0: free block o+
free blocks: x = size | a;
payload size: block size (in bytes)
a =x & 1;

payload: application data
optiona| (allocatEd blocks Only) slize = X & ~l;
padding

24

w UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Autumn 2024

Header Questions

+» How many “flags” can we fit in our header if our

allocator uses 16-byte alignment?
all mwl-l'qo'cs st 16 hie lowet 4 bE 45 2ewm . = 167 Ob (000D

A flagg

—

+ If we placed a new “flag” in the second least
significant bit, write out a C expression that will

extract this new flag from header
toov s‘feF3: (D mask out bt @
D shift i LSRR O

/ N
(hewler }:7-) > 1 (heaécr > _']_) g.. 1

25

	Memory Allocation I�CSE 351 Autumn 2024
	Relevant Course Information
	Reading Review
	Multiple Ways to Store Program Data
	Memory Allocation
	Dynamic Memory Allocation (Review)	
	Dynamic Memory Allocation
	Allocating Memory in C (Review)
	Allocating Memory in C (Review)
	Freeing Memory in C (Review)
	Memory Allocation Example in C
	Notation
	Allocation Example
	Implementation Interface (Review)
	Performance Goals (Review)
	Performance Goals
	Fragmentation (Review)
	Internal Fragmentation
	External Fragmentation
	Polling Question
	Implementation Issues
	Knowing How Much to Free
	Keeping Track of Free Blocks
	Implicit Free Lists
	Header Questions

