
CSE351, Autumn 2024L20: Memory Allocation I

Memory Allocation I
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

Adapted from
https://xkcd.com/1093/

https://xkcd.com/627/

CSE351, Autumn 2024L20: Memory Allocation I

Relevant Course Information

 HW18 due Wednesday (11/13) @ 11:59 pm
 HW19 due Friday (11/15) @ 11:59 pm
 Lab 4 preparation

 Lab 4 due Friday (11/22) @ 11:59 pm
 Cache parameter puzzles and code optimizations
 Some discussion in Section tomorrow (11/14)

2

CSE351, Autumn 2024L20: Memory Allocation I

Reading Review

 Terminology:
 Dynamically-allocated data: malloc, free
 Allocators: implicit vs. explicit allocators, heap blocks,

implicit vs. explicit free lists
 Heap fragmentation: internal vs. external

3

CSE351, Autumn 2024L20: Memory Allocation I

Multiple Ways to Store Program Data
 Static global data
 Fixed size at compile-time
 Entire lifetime of the program

(loaded from executable)
 Portion is read-only

(e.g. string literals)

 Stack-allocated data
 Local/temporary variables

• Can be dynamically sized (in some versions of C)

 Known lifetime (deallocated on return)

 Dynamic (heap) data
 Size known only at runtime (i.e. based on user-input)
 Lifetime known only at runtime (long-lived data structures)

4

int array[1024];

int* foo(int n) {
int tmp;
int local_array[n];

int* dyn =
(int*)malloc(n*sizeof(int));

return dyn;
}

CSE351, Autumn 2024L20: Memory Allocation I

Memory Allocation

 Dynamic memory allocation
 Introduction and goals
 Allocation and deallocation (free)
 Fragmentation

 Explicit allocation implementation
 Implicit free lists
 Explicit free lists (Lab 5)
 Segregated free lists

 Implicit deallocation: garbage collection
 Common memory-related bugs in C

5

CSE351, Autumn 2024L20: Memory Allocation I

Dynamic Memory Allocation (Review)

 Programmers use dynamic memory allocators to
acquire memory at run time
 For data structures whose size

(or lifetime) is known only at runtime
 Manages the heap segment of memory

 Types of allocators
 Explicit allocator: programmer allocates and frees space

• Example: malloc and free in C

 Implicit allocator: programmer only allocates space (no free)
• Example: garbage collection in Java, Caml, and Lisp

6

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Autumn 2024L20: Memory Allocation I

Dynamic Memory Allocation

 Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free
 What happens if we run out of heap space?

• Ask the Operating System for more memory and increment brk!

7

Top of heap
(brk ptr)

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Autumn 2024L20: Memory Allocation I

Allocating Memory in C (Review)
 Need to #include <stdlib.h>
 void* malloc(size_t size)
 Allocates a continuous block of size bytes of uninitialized memory
 size_t is a typedef for an unsigned 8-byte integer
 Returns a pointer to the beginning of the allocated block

• Returns NULL if allocation failed (also sets errno) or size==0
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

 Different blocks not necessarily adjacent

 Good practices:
 int* ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable (ints are not the same size on all machines)
• void* is implicitly cast into any pointer type; explicit typecast will help you catch

coding errors when pointer types don’t match

8

CSE351, Autumn 2024L20: Memory Allocation I

Allocating Memory in C (Review)
 Need to #include <stdlib.h>
 void* malloc(size_t size)
 Allocates a continuous block of size bytes of uninitialized memory
 size_t is a typedef for an unsigned 8-byte integer
 Returns a pointer to the beginning of the allocated block

• Returns NULL if allocation failed (also sets errno) or size==0
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

 Different blocks not necessarily adjacent

 Related functions:
 void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block
 void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)
 void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap 9

CSE351, Autumn 2024L20: Memory Allocation I

Freeing Memory in C (Review)
 Need to #include <stdlib.h>
 void free(void* p)
 Releases whole block pointed to by p back to the pool of available memory
 Pointer p must be the address originally returned by m/c/realloc (i.e.

beginning of the block), otherwise system exception raised
 Don’t call free on a block that has already been released
 No action occurs if you call: free on a NULL pointer
 Does not change the value of p (will still point to the deallocated memory)

• Good practice to set p = NULL after freeing

10

CSE351, Autumn 2024L20: Memory Allocation I

Memory Allocation Example in C

11

void foo(int n, int m) {
int i, *p;
p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
if (p == NULL) { /* check for allocation error */

perror("malloc");
exit(0);

}
for (i=0; i<n; i++) /* initialize int array */

p[i] = i;
/* add space for m ints to end of p block */

p = (int*) realloc(p,(n+m)*sizeof(int));
if (p == NULL) { /* check for allocation error */

perror("realloc");
exit(0);

}
for (i=n; i < n+m; i++) /* initialize new spaces */

p[i] = i;
for (i=0; i<n+m; i++) /* print new array */

printf("%d\n", p[i]);
free(p); /* free p */
p = NULL; /* good practice to set p to NULL after free */

}

CSE351, Autumn 2024L20: Memory Allocation I

Notation

 We will draw memory divided into words
 Each word is 64 bits = 8 bytes
 Allocations will be in sizes that are a multiple of words

(i.e. multiples of 8 bytes)
 Book and old videos still use 4-byte word

• Holdover from 32-bit version of textbook 🙁🙁

12

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes

CSE351, Autumn 2024L20: Memory Allocation I

Allocation Example

13

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word

CSE351, Autumn 2024L20: Memory Allocation I

Implementation Interface (Review)
 Applications
 Can issue arbitrary sequence of malloc and free requests
 Must never access memory not currently allocated
 Must never free memory not currently allocated

• Also must only use free with previously malloc’ed blocks

 Allocators
 Can’t control number or size of allocated blocks
 Must respond immediately to malloc
 Must allocate blocks from free memory
 Must align blocks so they satisfy all alignment requirements
 Can’t move the allocated blocks

14

CSE351, Autumn 2024L20: Memory Allocation I

Performance Goals (Review)

 Goals: Given some sequence of malloc and free
requests 𝑅𝑅0,𝑅𝑅1, … ,𝑅𝑅𝑘𝑘 , … ,𝑅𝑅𝑛𝑛−1, maximize throughput
and peak memory utilization
 These goals are often conflicting

1) Throughput
 Number of completed requests per unit time
 Example:

• If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

15

CSE351, Autumn 2024L20: Memory Allocation I

Performance Goals

 Definition: Aggregate payload 𝑃𝑃𝑘𝑘
 malloc(p) results in a block with a payload of p bytes
 After request 𝑅𝑅𝑘𝑘 has completed, the aggregate payload 𝑃𝑃𝑘𝑘

is the sum of currently allocated payloads

 Definition: Current heap size 𝐻𝐻𝑘𝑘
 Assume 𝐻𝐻𝑘𝑘 is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
 Defined as 𝑈𝑈𝑘𝑘 = (max

𝑖𝑖≤𝑘𝑘
𝑃𝑃𝑖𝑖)/𝐻𝐻𝑘𝑘 after 𝑘𝑘+1 requests

 Goal: maximize utilization for a sequence of requests
 Why is this hard? And what happens to throughput?

16

CSE351, Autumn 2024L20: Memory Allocation I

Fragmentation (Review)

 Poor memory utilization is caused by fragmentation
 Sections of memory are not used to store anything useful,

but cannot satisfy allocation requests
 Two types: internal and external

 Recall: Fragmentation in structs
 Internal fragmentation was wasted space inside of the struct

(between fields) due to alignment
 External fragmentation was wasted space between struct

instances (e.g. in an array) due to alignment

 Now referring to wasted space in the heap inside or
between allocated blocks

17

CSE351, Autumn 2024L20: Memory Allocation I

Internal Fragmentation

 For a given block, internal fragmentation occurs if
payload is smaller than the block

 Causes:
 Padding for alignment purposes
 Overhead of maintaining heap data structures (inside block,

outside payload)
 Explicit policy decisions (e.g. return a big block to satisfy a

small request)

 Easy to measure because only depends on past
requests

18

payload Internal
fragmentation

block

Internal
fragmentation

CSE351, Autumn 2024L20: Memory Allocation I

External Fragmentation
 For the heap, external fragmentation occurs when

allocation/free pattern leaves “holes” between blocks
 That is, the aggregate payload is non-continuous
 Can cause situations where there is enough aggregate heap memory to

satisfy request, but no single free block is large enough

 Don’t know what future requests will be
 Difficult to impossible to know if past placements will become

problematic
19

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word

CSE351, Autumn 2024L20: Memory Allocation I

Polling Question

 Which of the following statements is FALSE?
 Vote in Ed Lessons

A. Temporary arrays should not be allocated on the
Heap

B. malloc returns an address of a block that is
filled with random data

C. Peak memory utilization is a measure of both
internal and external fragmentation

D. An allocation failure will cause your program to
stop

20

CSE351, Autumn 2024L20: Memory Allocation I

Implementation Issues

 How do we know how much memory to free given
just a pointer?

 How do we keep track of the free blocks?
 How do we pick a block to use for allocation (when

many might fit)?
 What do we do with the extra space when allocating

a structure that is smaller than the free block it is
placed in?

 How do we reinsert a freed block into the heap?

21

CSE351, Autumn 2024L20: Memory Allocation I

Knowing How Much to Free

 Standard method
 Keep the length of a block in the word preceding the data

• This word is often called the header field or header

 Requires an extra word for every allocated block

22

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Autumn 2024L20: Memory Allocation I

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
 No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
 Different free lists for different size “classes”

4) Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Autumn 2024L20: Memory Allocation I

Implicit Free Lists
 For each block we need: size, is-allocated?
 Could store using two words, but wasteful

 Standard trick
 If blocks are aligned, some low-order bits of size are always 0
 Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾𝐾>1)
 When reading size, must remember to mask out this bit!

24

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte alignment,
possible values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
. . .

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

size | a;

x & 1;

x & ~1;

CSE351, Autumn 2024L20: Memory Allocation I

Header Questions

 How many “flags” can we fit in our header if our
allocator uses 16-byte alignment?

 If we placed a new “flag” in the second least
significant bit, write out a C expression that will
extract this new flag from header

25

	Memory Allocation I�CSE 351 Autumn 2024
	Relevant Course Information
	Reading Review
	Multiple Ways to Store Program Data
	Memory Allocation
	Dynamic Memory Allocation (Review)	
	Dynamic Memory Allocation
	Allocating Memory in C (Review)
	Allocating Memory in C (Review)
	Freeing Memory in C (Review)
	Memory Allocation Example in C
	Notation
	Allocation Example
	Implementation Interface (Review)
	Performance Goals (Review)
	Performance Goals
	Fragmentation (Review)
	Internal Fragmentation
	External Fragmentation
	Polling Question
	Implementation Issues
	Knowing How Much to Free
	Keeping Track of Free Blocks
	Implicit Free Lists
	Header Questions

