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Relevant Course Information

 HW18 due Wednesday (11/13) @ 11:59 pm
 HW19 due Friday (11/15) @ 11:59 pm
 Lab 4 preparation

 Lab 4 due Friday (11/22) @ 11:59 pm
 Cache parameter puzzles and code optimizations
 Some discussion in Section tomorrow (11/14)
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Reading Review

 Terminology:
 Dynamically-allocated data: malloc, free
 Allocators:  implicit vs. explicit allocators, heap blocks, 

implicit vs. explicit free lists
 Heap fragmentation:  internal vs. external
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Multiple Ways to Store Program Data
 Static global data
 Fixed size at compile-time
 Entire lifetime of the program 

(loaded from executable)
 Portion is read-only 

(e.g. string literals)

 Stack-allocated data
 Local/temporary variables

• Can be dynamically sized (in some versions of C)

 Known lifetime (deallocated on return)

 Dynamic (heap) data
 Size known only at runtime (i.e. based on user-input)
 Lifetime known only at runtime (long-lived data structures)
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int array[1024];

int* foo(int n) {
int tmp;
int local_array[n];

int* dyn = 
(int*)malloc(n*sizeof(int));

return dyn;
}
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Memory Allocation

 Dynamic memory allocation
 Introduction and goals
 Allocation and deallocation (free)
 Fragmentation

 Explicit allocation implementation
 Implicit free lists
 Explicit free lists (Lab 5)
 Segregated free lists

 Implicit deallocation:  garbage collection
 Common memory-related bugs in C
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Dynamic Memory Allocation (Review)

 Programmers use dynamic memory allocators to 
acquire memory at run time 
 For data structures whose size 

(or lifetime) is known only at runtime
 Manages the heap segment of memory

 Types of allocators
 Explicit allocator:  programmer allocates and frees space 

• Example:  malloc and free in C

 Implicit allocator: programmer only allocates space (no free)
• Example:  garbage collection in Java, Caml, and Lisp
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Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)
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Dynamic Memory Allocation

 Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free
 What happens if we run out of heap space?

• Ask the Operating System for more memory and increment brk!
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Top of heap
(brk ptr)

Program text (.text)
Initialized data (.data)
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Allocating Memory in C (Review)
 Need to #include <stdlib.h>
 void* malloc(size_t size)
 Allocates a continuous block of size bytes of uninitialized memory
 size_t is a typedef for an unsigned 8-byte integer
 Returns a pointer to the beginning of the allocated block

• Returns NULL if allocation failed (also sets errno) or size==0
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

 Different blocks not necessarily adjacent

 Good practices:
 int* ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable (ints are not the same size on all machines)
• void* is implicitly cast into any pointer type; explicit typecast will help you catch 

coding errors when pointer types don’t match
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Allocating Memory in C (Review)
 Need to #include <stdlib.h>
 void* malloc(size_t size)
 Allocates a continuous block of size bytes of uninitialized memory
 size_t is a typedef for an unsigned 8-byte integer
 Returns a pointer to the beginning of the allocated block

• Returns NULL if allocation failed (also sets errno) or size==0
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

 Different blocks not necessarily adjacent

 Related functions:
 void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block
 void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)
 void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap 9
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Freeing Memory in C (Review)
 Need to #include <stdlib.h>
 void free(void* p)
 Releases whole block pointed to by p back to the pool of available memory
 Pointer p must be the address originally returned by m/c/realloc (i.e.

beginning of the block), otherwise system exception raised
 Don’t call free on a block that has already been released
 No action occurs if you call: free on a NULL pointer
 Does not change the value of p (will still point to the deallocated memory)

• Good practice to set p = NULL after freeing
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Memory Allocation Example in C
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void foo(int n, int m) {
int i, *p;
p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
if (p == NULL) {                  /* check for allocation error */

perror("malloc");
exit(0);

}
for (i=0; i<n; i++)               /* initialize int array */

p[i] = i;
/* add space for m ints to end of p block */

p = (int*) realloc(p,(n+m)*sizeof(int));
if (p == NULL) {                  /* check for allocation error */

perror("realloc");
exit(0);

}
for (i=n; i < n+m; i++)           /* initialize new spaces */

p[i] = i;
for (i=0; i<n+m; i++)             /* print new array */ 

printf("%d\n", p[i]);
free(p); /* free p */
p = NULL; /* good practice to set p to NULL after free */

}
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Notation

 We will draw memory divided into words
 Each word is 64 bits = 8 bytes
 Allocations will be in sizes that are a multiple of words

(i.e. multiples of 8 bytes)
 Book and old videos still use 4-byte word

• Holdover from 32-bit version of textbook 🙁🙁
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Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes
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Allocation Example
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p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word
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Implementation Interface (Review)
 Applications
 Can issue arbitrary sequence of malloc and free requests
 Must never access memory not currently allocated 
 Must never free memory not currently allocated

• Also must only use free with previously malloc’ed blocks

 Allocators
 Can’t control number or size of allocated blocks
 Must respond immediately to malloc
 Must allocate blocks from free memory
 Must align blocks so they satisfy all alignment requirements
 Can’t move the allocated blocks
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Performance Goals (Review)

 Goals: Given some sequence of malloc and free
requests 𝑅𝑅0,𝑅𝑅1, … ,𝑅𝑅𝑘𝑘 , … ,𝑅𝑅𝑛𝑛−1, maximize throughput
and peak memory utilization
 These goals are often conflicting

1) Throughput
 Number of completed requests per unit time
 Example:

• If 5,000  malloc calls and 5,000 free calls completed in 10 seconds, 
then throughput is 1,000 operations/second
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Performance Goals

 Definition: Aggregate payload 𝑃𝑃𝑘𝑘
 malloc(p) results in a block with a payload of p bytes
 After request 𝑅𝑅𝑘𝑘 has completed, the aggregate payload 𝑃𝑃𝑘𝑘

is the sum of currently allocated payloads

 Definition: Current heap size 𝐻𝐻𝑘𝑘
 Assume 𝐻𝐻𝑘𝑘 is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
 Defined as 𝑈𝑈𝑘𝑘 = (max

𝑖𝑖≤𝑘𝑘
𝑃𝑃𝑖𝑖)/𝐻𝐻𝑘𝑘 after 𝑘𝑘+1 requests

 Goal: maximize utilization for a sequence of requests
 Why is this hard?  And what happens to throughput?
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Fragmentation (Review)

 Poor memory utilization is caused by fragmentation
 Sections of memory are not used to store anything useful, 

but cannot satisfy allocation requests
 Two types:  internal and external

 Recall: Fragmentation in structs
 Internal fragmentation was wasted space inside of the struct

(between fields) due to alignment
 External fragmentation was wasted space between struct

instances (e.g. in an array) due to alignment

 Now referring to wasted space in the heap inside or 
between allocated blocks
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Internal Fragmentation

 For a given block, internal fragmentation occurs if 
payload is smaller than the block

 Causes:
 Padding for alignment purposes
 Overhead of maintaining heap data structures (inside block, 

outside payload)
 Explicit policy decisions (e.g. return a big block to satisfy a 

small request)

 Easy to measure because only depends on past 
requests
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payload Internal 
fragmentation

block

Internal 
fragmentation
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External Fragmentation
 For the heap, external fragmentation occurs when 

allocation/free pattern leaves “holes” between blocks
 That is, the aggregate payload is non-continuous
 Can cause situations where there is enough aggregate heap memory to 

satisfy request, but no single free block is large enough

 Don’t know what future requests will be
 Difficult to impossible to know if past placements will become 

problematic
19

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word
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Polling Question

 Which of the following statements is FALSE?
 Vote in Ed Lessons

A. Temporary arrays should not be allocated on the 
Heap

B. malloc returns an address of a block that is 
filled with random data

C. Peak memory utilization is a measure of both 
internal and external fragmentation

D. An allocation failure will cause your program to 
stop
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Implementation Issues

 How do we know how much memory to free given 
just a pointer?

 How do we keep track of the free blocks?
 How do we pick a block to use for allocation (when 

many might fit)?
 What do we do with the extra space when allocating 

a structure that is smaller than the free block it is 
placed in?

 How do we reinsert a freed block into the heap?
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Knowing How Much to Free

 Standard method
 Keep the length of a block in the word preceding the data

• This word is often called the header field or header

 Requires an extra word for every allocated block
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free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)
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Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
 No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
 Different free lists for different size “classes”

4) Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within 

each free block, and the length used as a key
23

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)
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Implicit Free Lists
 For each block we need:  size, is-allocated?
 Could store using two words, but wasteful

 Standard trick
 If blocks are aligned, some low-order bits of size are always 0
 Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾𝐾>1)
 When reading size, must remember to mask out this bit!
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Format of 
allocated and 

free blocks:

a = 1:  allocated block  
a = 0:  free block

size:  block size (in bytes)

payload:  application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte alignment, 
possible values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
. . .

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

size | a;

x & 1;

x & ~1;
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Header Questions

 How many “flags” can we fit in our header if our 
allocator uses 16-byte alignment?

 If we placed a new “flag” in the second least 
significant bit, write out a C expression that will 
extract this new flag from header
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