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Relevant Course Information

+» HW18 due Wednesday (11/13) @ 11:59 pm
+» HW19 due Friday (11/15) @ 11:59 pm

" Lab 4 preparation
% Lab 4 due Friday (11/22) @ 11:59 pm

" Cache parameter puzzles and code optimizations
= Some discussion in Section tomorrow (11/14)
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Reading Review

+» Terminology:
®= Dynamically-allocated data: malloc, free

= Allocators: implicit vs. explicit allocators, heap blocks,
implicit vs. explicit free lists

" Heap fragmentation: internal vs. external
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Multiple Ways to Store Program Data

CSE351, Autumn 2024

<+ Static global dataf—\
»int array[1024];

Fixed size at compile-time

= Entire lifetime of the program
(loaded from executable)

= Portion is read-only
(e.g. string literals)

« Stack-allocated data

" Local/temporary variables

int* foo(int n) {
/%>int tmp;
_>int local arrayl[n];

int* dyn =
(int*)malloc (n*sizeof (int)) ;
return dyn?%

}

Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

<+ Dynamic (heap) data

= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)
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Memory Allocation

o

Dynamic memory allocation

" Introduction and goals

= Allocation and deallocation (free)
" Fragmentation

o

Explicit allocation implementation

" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

Implicit deallocation: garbage collection

*

o

Common memory-related bugs in C
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Dynamic Memory Allocation (Review)

+ Programmers usg dynamic memory a

N
locatorste —__
—

acquire memory at run time

" For data structures whose size
(or lifetime) is known only at runtime

" Manages the heap segment of memory

+ Types of allocators

(

(

|

User stack )
fr— T‘
Heap (viamalloc) >
W

Initialized data (. data)
Program text (. text)

0

= Explicit allocator: programmer allocates and frees space

- Exampleymallodand freein

—

Implicit allocator: programmer only allocates space (no free)
- Example: garbage collection in Java, Caml, and Lisp

// —_—

\
S New
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Dynamic Memory Allocation

+ Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

®" What happens if we run out of heap space?
- Ask the Operating System for more memory and increment brk!

ﬁrgP F_:_L User stack
t ‘ «— Top of heap

Heap (viamalloc) (brk ptr)

Uninitialized data (.bss)
Initialized data (. data)
Program text (. text)
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Allocating Memory in C (Review)

\include <stdlib.h>4/§

o:~670i@yélloc (size t size)

m ates a continuous block of size bytes of uninitialized memory

——

" size tisatypedef foran unsigned 8-byte integer

= Returns a pointer to the beginning of the allocated block
Returns NULL if allocation failed (also sets errno) or size==
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
= Different blocks not necessarily adjacent

+» Good practices:
" int* ptr = (1nt*) malloc(n*sizeof (1nt));
sizeof makes code more portable (ints are not the same size on all machines)

- void* is implicitly cast into any pointer type; explicit typecast will help you catch
coding errors when pointer types don’t match
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Allocating Memory in C (Review)

+ Needto #include <stdlib.h>
» void* malloc(size t size)
= Allocates a continuous block of size bytes of uninitialized memory

" size tisatypedef foran unsigned 8-byte integer

= Returns a pointer to the beginning of the allocated block
Returns NULL if allocation failed (also sets errno) or size==
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
_ Diffe%ocksnot necessarily adjacent

+ Related functions: —
" void* calloc(size_t nitems, size t size)
- “Zeros out” allocated block
" void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)

" void* sbrk (intptr t increment)
Used internally by allocators to grow or shrink the heap
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Freeing Memory in C (Review) @pe{?)

+ Needto #include <stdlib.h>

ozogoid free (void* p) >

= Releases whole bl ' o by p back to the pool of available memory

= Pointer p must be the address originally returned by m/c/realloc (i.e.
beginnﬁ‘g’of the block), otherwise system exception raised

"= Don’t call free on a block that has already been released

/—

= No action occurs if you call: free on a NULL pointer

=[ Does not change the value of p (will still point to the deallocated memory)
- Good practicetosetp = NULL after freeing

10
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Shkele \%?f;/iL

Memory Allocation Example in C ©
/ / SEWAEER]

void foo(int n, int m) {
int 1, *p;
——p = (int*) malloc(n*sizeof (int)); /* allocate block of nints */

if (p == NULL) { /* check for allocation error */
perror ("malloc") ;
exit (0) ;
}
__t+— for (i=0; i<n; i++) /* initialize int array */
pli] = 1; G

A~ /* addspace for mints to end of p block */
(int*) realloc(p) (n+m) *sizeof (1int)) ;

if == NULL) { /* check for allocation error */
perror "realloc")°
ex1t
(i=n; 1 < n+m; i++) / * initialize new spaces */
p [i] = 1i;
or (1=0; i<n+m; 1i++) /* print new array */
printf ("$d\n", pl[il);
> free(pi; /* freep */
> = NULL; /* good practice to set p to NULL after free */

11
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=1 word = 8 bytes

+» We will draw memory divided into words
" Each word is 64 bits = 8 bytes

® Allocations will be in sizes that are a multiple of words

(i.e. multiples of 8 bytes)

®" Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook @

/

~~ N\

Heap () () )
\ v ) N—— w N———
Allocated block Free block

— Commm—
32 bytes 24 bytes

Allocated word

12
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Allocation Example

= 8-byte word

pl = malloc(32)

p2 = malloc (40)

p3 = malloc (48)

A /NN

free (p2)

—— [E———

l\__,AeFmA; on allotator—

pr4 = malloc(16)

P\ q,cemevd' Po'u‘cy
77T T 7

Q. malloc 32>

4

13
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Implementation Interface (Review)

+ Applications
>' Can issue arbitrary sequence of malloc and free requests

\

" Must never access memory not currently allocated

" Must never free memory not currently allocated
« Also must only use free with previously malloc’ed blocks

« Allocators

Can’t control number or size of allocated blocks
" Must respond immediatelytomalloc (contt rearder or biictfer)

= Must allocate blocks from free memory Cblocks cant overlap)

= Must align blocks so they satisfy all alignment requirements

.—/

= Can’t move the allocated blocks (detrpmostation net allsed)

oulh borek your portea .
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Performance Goals (Review)

+» @oals: Given some sequence of malloc and free
requests Ry, Ry, ..., Ry, ..., R,,_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

N\

1) Throughput A C‘S() :r&%+y

= Number of completed requests per unit time

—

= Example:

- If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

15
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Performance Goals

+ Definition: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P;,
is the sum of currently allocated payloads

+ Definition: Current heap size H,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

“hink Car@‘@(b "

2) Peak Memory Utilization

= Defined as U;, = (m%cx P;)/H, after k+1 requests
L=<

" Goal: maximize utilization for a sequence of requests
" Why is this hard? And what happens to throughput?

16
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Fragmentation (Review)

« Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

®" Two types: internal and external

+~ Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

«» Now referring to wasted space in the heap inside or
between allocated blocks

17
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Internal Fragmentation
/

« For a given block, internal fragmentation occurs if

payload is smaller than block  mslloc(13)
P\ block
-

\V
Internal

—
Internal
fragmentation — | payload H'61’)7%/ . fragmentation

» Causes: e -

o Paddingﬁgnment purposes
" QOverhead of maintaining heap data structures (inside block,
outside payload)

= Explicit policy decisions (e.g. return a big block to satisfy a
small request)  faste, thraghpet +o nst indidually size evy block

+ Easy to measure because only depends on past
requests

18
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= 8-byte word

External Fragmentation

« For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
= Thatis, the aggregate payload is non-continuous

= Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

pl = malloc (32)

p2 = malloc (40)

p3 = malloc (48)

free (p2) //

p4 = malloc (48) Oh no! (WhaWnow?) /[_\/

«» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become
problematic

19
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Polling Question

+» Which of the following statements is FALSE?
= Vote in Ed Lessons

A.
B.
C.

/(
/r

Temporary arrays should not be allocated on the
Heap Should allocate oN —h\e S’T&C\(

malloc returns an address of a block that is
i i Wocates only; inticizot
filled with random data ***% %3 "o infiafization

Peak memory utilization is a measure of both

° o ceaale lmd\
internal and external fragmentation @:if, P:z

oy
%D.

An allocation failure will cause your program to
Stop \')us'(' returns NULL

20
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Implementation Issues

+» How do we know how much memory to free given
just a pointer?

+» How do we keep track of the free blocks?

+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

21
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= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
- This word is often called the header field or header

= Requires an extra word for every allocated block

cefurneh odd ress fo .('\‘B

p0</’ t start &szlmd
ni)
w‘/'\‘%\
p0 = mallo 40
block size data

(nd size of poyled)

free (p0)

L> red header ¢ -8,
'FY‘EQ ‘H‘Af Mu()l\ $ Pace

22
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= 8-byte word (free)

Keeping Track of Free Blocks _ 8 byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

- — -y -y,
/” =~ /’ \\ /” 5\\
- S A LN

401\ \V/@ |48 16
] = \_____j
O\(M pomeeP

2) Explicit free list among only the free blocks, using pointers
m‘? (\ivx\:e& List! )
po\ncr

40 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23
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address is muttige sf §=0L1000
e o o e.g. with 8-byte alignment,
Implicit Free Lists possible values for size:
00001000 = 8 bytes
; . 00010000 = 16 bytes
+ For each block we need: size, is-allocated? | 00011000 - 24 bytes

L wed :
\/ o rl\:'\'

= Could store using two words, but wasteful - ¢

+ Standard trick
= |f blocks are alighed, some low-order bits of size are always 0O

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

" When reading size, must remember to mask out this bit!

8 bytes
A
//_\ —
Format of [ size ?)a = 1: allocated block If x is first word (header):
allocated and a=0: free block o+
free blocks: x = size | a;
payload size: block size (in bytes)
a =x & 1;

payload: application data
optiona| (allocatEd blocks Only) slize = X & ~l;
padding

24
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Header Questions

+» How many “flags” can we fit in our header if our

allocator uses 16-byte alignment?
all mwl-l'qo'cs st 16 hie lowet 4 bE 45 2ewm . = 167 Ob (000D

A flagg

—

+ If we placed a new “flag” in the second least
significant bit, write out a C expression that will

extract this new flag from header
toov s‘feF3: (D mask out bt @
D shift i LSRR O

/ N
(hewler }:7-) > 1 (heaécr > _']_) g.. 1

25
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