Memory Allocation I

CSE 351 Autumn 2024

Instructor:

Ruth Anderson

Teaching Assistants:

Alexandra Michael

Connie Chen

Chloe Fong

Chendur Jayavelu

Joshua Tan

Nikolas McNamee

Nahush Shrivatsa

Naama Amiel

Neela Kausik

Renee Ruan

Rubee Zhao

Samantha Dreussi

Sean Siddens

Waleed Yagoub

Adapted from https://xkcd.com/1093/

WHEN WILL WE FORGET?

BASED ON US CENSUS BUREAU NATIONAL POPULATION PROJECTIONS

ASSUMING WE DON'T REMEMBER CULTURAL EVENTS FROM BEFORE AGE 5 OR 6

BY THIS YEAR:	THE MAJORITY OF AMERICANS WILL BE TOO YOUNG TO REMEMBER:
2016	RETURN OF THE JEDI RELEASE
2017	THE FIRST APPLE MACINTOSH
2018	NEW COKE
2019	CHALLENGER
2020	CHERNOBYL
2021	BLACK MONDAY
2022	THE REAGAN PRESIDENCY
2023	THE BERLIN WALL
2024	HAMMERTIME
2025	THE SOVIET UNION
2026	THE LA RIOTS
2027	LORENA BOBBITT
2028	THE FORREST GUMP RELEASE.
2029	THE RWANDAN GENOCIDE
2030	OT SIMPSON'S TRIAL
2038	ATIME BEFORE FACELSOOK
2039	VH1's I LOVE THE 90s
2040	HURRICANE KATRINA
2041	THE PLANET PLUTO
2042	THE FIRST IPHONE
2047	ANYTHING EMBARRASSING YOU DO TODAY

Relevant Course Information

- HW18 due Wednesday (11/13) @ 11:59 pm
- HW19 due Friday (11/15) @ 11:59 pm
 - Lab 4 preparation
- Lab 4 due Friday (11/22) @ 11:59 pm
 - Cache parameter puzzles and code optimizations
 - Some discussion in Section tomorrow (11/14)

Reading Review

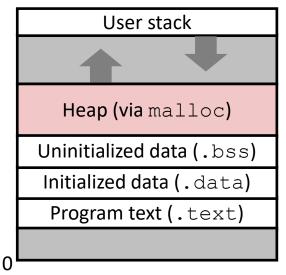
Terminology:

- Dynamically-allocated data: malloc, free
- Allocators: implicit vs. explicit allocators, heap blocks, implicit vs. explicit free lists
- Heap fragmentation: internal vs. external

Multiple Ways to Store Program Data

- Static global data
 - Fixed size at compile-time
 - Entire lifetime of the program (loaded from executable)
 - Portion is read-only (e.g. string literals)
- Stack-allocated data
 - Local/temporary variables
 - Can be dynamically sized (in some versions of C)
 - Known lifetime (deallocated on return)
- Dynamic (heap) data
 - Size known only at runtime (i.e. based on user-input)
 - Lifetime known only at runtime (long-lived data structures)

```
int array[1024];
int* foo(int n) {
  int tmp;
  int local_array[n];

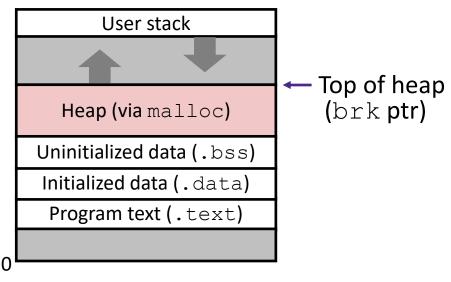

int* dyn =
    (int*)malloc(n*sizeof(int));
  return dyn;
}
```

Memory Allocation

- Dynamic memory allocation
 - Introduction and goals
 - Allocation and deallocation (free)
 - Fragmentation
- Explicit allocation implementation
 - Implicit free lists
 - Explicit free lists (Lab 5)
 - Segregated free lists
- Implicit deallocation: garbage collection
- Common memory-related bugs in C

Dynamic Memory Allocation (Review)

- Programmers use dynamic memory allocators to
 - acquire memory at run time
 - For data structures whose size (or lifetime) is known only at runtime
 - Manages the heap segment of memory



- Types of allocators
 - Explicit allocator: programmer allocates and frees space
 - Example: malloc and free in C
 - Implicit allocator: programmer only allocates space (no free)
 - Example: garbage collection in Java, Caml, and Lisp

CSE351, Autumn 2024

Dynamic Memory Allocation

- Allocator organizes heap as a collection of variablesized blocks, which are either allocated or free
 - What happens if we run out of heap space?
 - Ask the Operating System for more memory and increment brk!

Allocating Memory in C (Review)

- Need to #include <stdlib.h>
- void* malloc(size_t size)
 - Allocates a continuous block of size bytes of uninitialized memory
 - size_t is a typedef for an unsigned 8-byte integer
 - Returns a pointer to the beginning of the allocated block
 - Returns NULL if allocation failed (also sets errno) or size==0
 - Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
 - Different blocks not necessarily adjacent

Good practices:

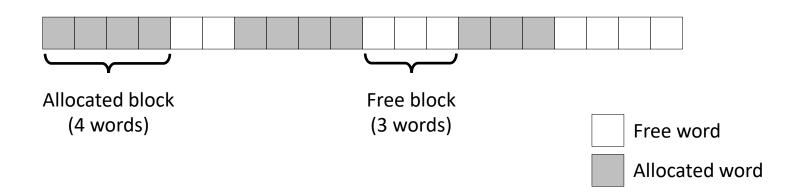
- int* ptr = (int*) malloc(n*sizeof(int));
 - sizeof makes code more portable (ints are not the same size on all machines)
 - void* is implicitly cast into any pointer type; explicit typecast will help you catch coding errors when pointer types don't match

Allocating Memory in C (Review)

- Need to #include <stdlib.h>
- void* malloc(size_t size)
 - Allocates a continuous block of size bytes of uninitialized memory
 - size_t is a typedef for an unsigned 8-byte integer
 - Returns a pointer to the beginning of the allocated block
 - Returns NULL if allocation failed (also sets errno) or size==0
 - Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
 - Different blocks not necessarily adjacent
- Related functions:
 - void* calloc(size t nitems, size t size)
 - "Zeros out" allocated block
 - void* realloc(void* ptr, size t size)
 - Changes the size of a previously allocated block (if possible)
 - void* sbrk(intptr t increment)
 - Used internally by allocators to grow or shrink the heap

Freeing Memory in C (Review)

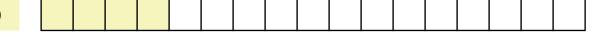
- Need to #include <stdlib.h>
- void free (void* p)
 - Releases whole block pointed to by p back to the pool of available memory
 - Pointer p must be the address originally returned by m/c/realloc (i.e. beginning of the block), otherwise system exception raised
 - Don't call free on a block that has already been released
 - No action occurs if you call: free on a NULL pointer
 - Does not change the value of p (will still point to the deallocated memory)
 - Good practice to set p = NULL after freeing


Memory Allocation Example in C

```
void foo(int n, int m) {
  int i, *p;
  p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
                                          /* check for allocation error */
  if (p == NULL) {
    perror("malloc");
    exit(0);
  for (i=0; i<n; i++)
                                          /* initialize int array */
    p[i] = i;
                                 /* add space for m ints to end of p block */
  p = (int*) realloc(p, (n+m) *sizeof(int));
                                          /* check for allocation error */
  if (p == NULL) {
    perror("realloc");
    exit(0);
                                         /* initialize new spaces */
  for (i=n; i < n+m; i++)
    p[i] = i;
  for (i=0; i<n+m; i++)
                                          /* print new array */
    printf("%d\n", p[i]);
  free(p);
                                          /* free p */
                               /* good practice to set p to NULL after free */
  p = NULL;
```

Notation

	= 1 word = 8 bytes
--	--------------------

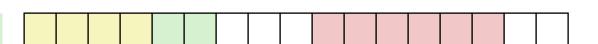

- We will draw memory divided into words
 - Each word is 64 bits = 8 bytes
 - Allocations will be in sizes that are a multiple of words (i.e. multiples of 8 bytes)
 - Book and old videos still use 4-byte word
 - Holdover from 32-bit version of textbook

Allocation Example

= 8-byte word

$$p1 = malloc(32)$$

$$p2 = malloc(40)$$


$$p3 = malloc(48)$$

free (p2)

$$p4 = malloc(16)$$

Implementation Interface (Review)

Applications

- Can issue arbitrary sequence of malloc and free requests
- Must never access memory not currently allocated
- Must never free memory not currently allocated
 - Also must only use free with previously malloc'ed blocks

Allocators

- Can't control number or size of allocated blocks
- Must respond immediately to malloc
- Must allocate blocks from free memory
- Must align blocks so they satisfy all alignment requirements
- Can't move the allocated blocks

Performance Goals (Review)

- * Goals: Given some sequence of malloc and free requests $R_0, R_1, ..., R_k, ..., R_{n-1}$, maximize throughput and peak memory utilization
 - These goals are often conflicting

1) Throughput

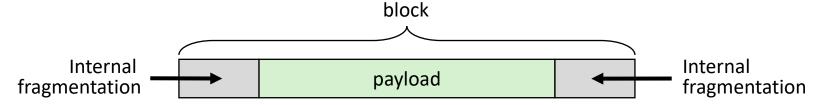
- Number of completed requests per unit time
- Example:
 - If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then throughput is 1,000 operations/second

Performance Goals

- * Definition: Aggregate payload P_k
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the aggregate payload P_k is the sum of currently allocated payloads
- * Definition: Current heap size H_k
 - Assume H_k is monotonically non-decreasing
 - Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

- Defined as $U_k = (\max_{i \le k} P_i)/H_k$ after k+1 requests
- Goal: maximize utilization for a sequence of requests
- Why is this hard? And what happens to throughput?

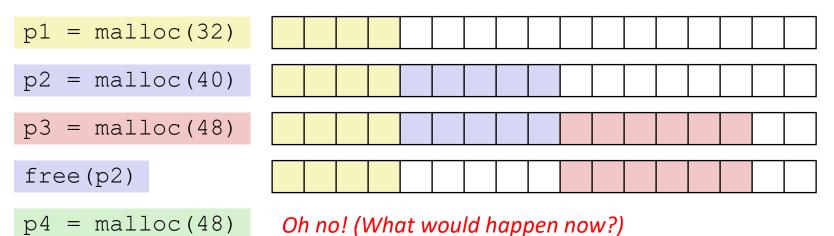

Fragmentation (Review)

- Poor memory utilization is caused by fragmentation
 - Sections of memory are not used to store anything useful, but cannot satisfy allocation requests
 - Two types: internal and external
- Recall: Fragmentation in structs
 - Internal fragmentation was wasted space inside of the struct (between fields) due to alignment
 - External fragmentation was wasted space between struct instances (e.g. in an array) due to alignment
- Now referring to wasted space in the heap inside or between allocated blocks

CSE351. Autumn 2024

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is smaller than the block


Causes:

- Padding for alignment purposes
- Overhead of maintaining heap data structures (inside block, outside payload)
- Explicit policy decisions (e.g. return a big block to satisfy a small request)
- Easy to measure because only depends on past requests

Externa	l Fragmer	ntation
---------	-----------	---------

	= 8-byte word
--	---------------

- For the heap, external fragmentation occurs when allocation/free pattern leaves "holes" between blocks
 - That is, the aggregate payload is non-continuous
 - Can cause situations where there is enough aggregate heap memory to satisfy request, but no single free block is large enough

- Don't know what future requests will be
 - Difficult to impossible to know if past placements will become problematic

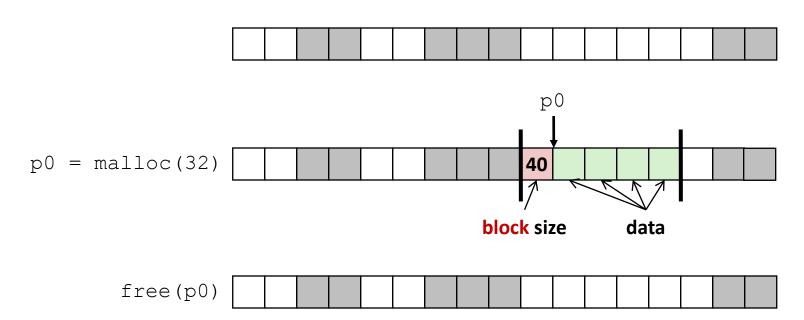
Polling Question

- Which of the following statements is FALSE?
 - Vote in Ed Lessons
 - A. Temporary arrays should not be allocated on the Heap

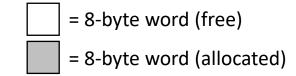
L20: Memory Allocation I

- B. malloc returns an address of a block that is filled with random data
- C. Peak memory utilization is a measure of both internal and external fragmentation
- D. An allocation failure will cause your program to stop

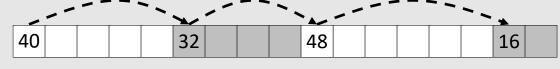
Implementation Issues

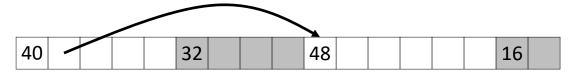

- * How do we know how much memory to free given just a pointer?
- How do we keep track of the free blocks?
- How do we pick a block to use for allocation (when many might fit)?
- What do we do with the extra space when allocating a structure that is smaller than the free block it is placed in?
- How do we reinsert a freed block into the heap?

Knowing How Much to Free


	= 8-byte word (free)
	= 8-byte word (allocated)

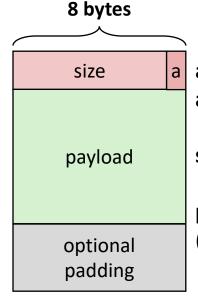
CSE351, Autumn 2024


- Standard method
 - Keep the length of a block in the word preceding the data
 - This word is often called the header field or header
 - Requires an <u>extra word for every allocated block</u>


Keeping Track of Free Blocks

- 1) Implicit free list using length links all blocks using math
 - No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers



- 3) Segregated free list
 - Different free lists for different size "classes"
- 4) Blocks sorted by size
 - Can use a balanced binary tree (e.g. red-black tree) with pointers within each free block, and the length used as a key

Implicit Free Lists

- For each block we need: size, is-allocated?
 - Could store using two words, but wasteful
- Standard trick
 - If blocks are aligned, some low-order bits of size are always 0
 - Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)
 - When reading size, must remember to mask out this bit!

Format of allocated and free blocks:

a a = 1: allocated block

a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

e.g. with 8-byte alignment, possible values for size:

00001000 = 8 bytes

00010000 = 16 bytes

00011000 = 24 bytes
...

If x is first word (header):

$$x = size | a;$$

$$a = x & 1;$$

size =
$$x \& \sim 1$$
;

Header Questions

How many "flags" can we fit in our header if our allocator uses 16-byte alignment?

If we placed a new "flag" in the second least significant bit, write out a C expression that will extract this new flag from header