YA UNIVERSITY of WASHINGTON

Caches IV

CSE 351 Autumn 2024

Instructor:
Ruth Anderson

\WJHATS THIS?

THE CLoUD.

K:"
2

Chendur Jayavelu
Nahush Shrivatsa

Renee Ruan
Sean Siddens

HUH? T ALWAYS THOUGHT ‘THE
CLOUD wies A HUGE, AMDRPHOUS
NETWORK, OF SERVERS SOMEWHERE.

YERH, BUT EVERYENE BUYS

SERVER TIME FROM EVERYONE |~

ELSE. INTHE END, THEYRE
ALL GETTNG [T HERE,

|
O

Alexandra Michael

L19: Caches IV

Teaching Assistants:

Connie Chen
Joshua Tan
Naama Amiel

Rubee Zhao
Waleed Yagoub

CSE351, Autumn 2024

Chloe Fong
Nikolas McNamee
Neela Kausik
Samantha Dreussi

HOW? YOURE ON
A CPBLE MODEM.

r-"/'IHER"‘E'E- AlOT

OF CACHING,

SHOULD THE CoRD BE
STRETCHED ACRDSS
THE ROOM UKE THIST

OF COURSE. IT
HAS T REACH
THE SERVER,

AND THE SERVER

15 OVER THERE.

\

“

WHAT IF SOMECHE TRiPs oM IT?

WHO WOULD WANT TO D¢ THAT?
IT S0uMDS UNPLERSANT.

UH. SOMETMES PEORLE (

DO STUFF BY ACCIDENT.
T DOMT THINK.
S I kENOW BNYEIDY
LIKE THAT,

O O)

http://xkcd.com/908/

http://xkcd.com/908/

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Relevant Course Information

+» Lab 3 due Mon 11/11 (Encouraged to aim for Fri 11/08)

" You have everything you need to do the lab as of 10/28
= Last part of HW15 is useful for Lab 3

+» HW17 due Friday (11/08) @ 11:59 pm

+» Mid-quarter Survey due Saturday (11/09)

+» HW18 due Wednesday (11/13) @ 11:59 pm
» HW19 due Friday (11/15) @ 11:59 pm

" Lab 4 preparation

% Lab 4 coming soon!

" Cache parameter puzzles and code optimizations

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Reading Review

+» Terminology:
= Write-hit policies: write-back, write-through
= Write-miss policies: write allocate, no-write allocate
" Cache blocking

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

What about writes? (Review)

+ Multiple copies of data may exist:

" multiple levels of cache and main memory

» What to do on a write-hit (data already in cache)?
= Write-through: write immediately to next level

= Write-back: defer write to next level until line is evicted (replaced)
- Must track which cache lines have been modified (“dirty bit”)

What to do on a write-miss (data not in cache)?

= Write allocate: (“fetch on write”) load into cache, then execute the
write-hit policy
- Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

‘0

L)

Typical caches:
= Write-back + Write allocate, usually

)
*

= Write-through + No-write allocate, occasionally

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Write-back, Write Allocate Example

Note: While unrealistic, this example assumes that all requests have
offset 0 and are for a block’s worth of data.

Valid Dirty Tag Block Contents
Cache: 1|10 G OxXxBEEF
4

There is only one set in this tiny cache,
so the tag is the entire block number!

Block X
Memory: Num :
F 0xCAFE

G OxBEEF

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Write-back, Write Allocate Example (15t access)

Not valid x86, just using block num instead
[of full byte address to keep the example simple

1) mov S$SOxFACE, (F)

Write Miss!
Valid Dirty Tag Block Contents
Cache: 1110 G OxXxBEEF
Step 1: Bring F into
cache
Block X
Memory: Num :
F OxCAFE

G OxBEEF

YA UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Autumn 2024

Write-back, Write Allocate Example (15t access)

1) mov S$SOxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1|10 F O0xCAFE
Block X
Memory: Num :
F OxCAFE
G OxXBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit

YA UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Autumn 2024

Write-back, Write Allocate Example (15t access)

1) mov S$SOxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1] 11 F OxFACE
Block X
Memory: Num :
F OxCAFE
G OxXBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit

YA UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Autumn 2024

Write-back, Write Allocate Example (2 access)

1) mov $OxFACE, (F) 2)mov $OxFEED, (F)

Write Miss Write Hit!
Valid Dirty Tag Block Contents
Cache: 1] 11 F OxFACE
Block X
Memory: Num :
F OxCAFE
G OxBEEF

Step: Write
OxFEED to cache
only (and set the
dirty bit)

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Write-back, Write Allocate Example (2 access)

1) mov $OxFACE, (F) 2)mov $OxFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1111 F OXFEED
Block X
Memory: Num :
F OxCAFE

G OxBEEF

10

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Write-back, Write Allocate Example (3 access)

1) mov SOxFACE, (F) 2)mov S$OxFEED, (F) 3)mov (G), %$ax

Write Miss Write Hit Read Miss!
Valid Dirty Tag Block Contents
Cache: 1111 F OxXFEED

Step 1: Write F back
to memory since it

is dirty
Block X
Memory: Num :
F O0xCAFE

G OxBEEF

11

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Write-back, Write Allocate Example (3 access)

1) mov SOxFACE, (F) 2)mov S$OxFEED, (F) 3)mov (G), %$ax

Write Miss Write Hit Read Miss
Valid Dirty Tag Block Contents
Cache: 1110 G OxBEEF

Step 1: Write F back
to memory since it

is dirty
Block :
Memory: Num : Step 2: Bring G into

F OXFEED the cache so that
. we can copy it into
: Zax

G OxBEEF
: 12

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache Simulator

+» Want to play around with cache parameters and
policies? Check out our cache simulator!

" https://courses.cs.washington.edu/courses/cse351/cachesim/

+» Way to use:

= Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions
= Self-guided Cache Sim Demo in section

= Will be used in HW19 — Lab 4 Preparation

13

https://courses.cs.washington.edu/courses/cse351/cachesim/

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Polling Question

« Which of the following cache statements is FALSE?
= Vote in Ed Lessons

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

14

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Optimizations for the Memory Hierarchy

+» Write code that has locality!
= Spatial: access data contiguously

" Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" Loop transformations

15

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Example: Matrix Multiplication

C A B

mn
Cij = E ik -k A«
k=1

16

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Matrices in Memory

+» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

17

L19: Caches IV

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON

Naive Matrix Multiply

move along rows of A
for (1 = 0; 1 < n; 1++)
move along columns of B
for (jJ = 0; jJ < n; J++)
EACH k loop reads row of A,

Also read & write C(i,j) n times

col of B

for (k = 0; k < n; k++)
Clz][3] += A[1][k] * Blk]lI[3];
C(i,j) C(i,j) A(i,:)
N — N _|_ I X B(:,j)

18

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache Miss Analysis (Naive) ['gno””g]

matrix c

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size K =64 B =8 doubles

® Cache size is much smaller than n

« Each iteration:

1
X

n on .
" —4+ N =—misses
8 8

19

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache Miss Analysis (Naive) ['gno””g]

matrix c

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size K =64 B =8 doubles

" Cache size is much smaller than n

«» Each iteration:
m = X
= 2+n =—nm|sses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide
20

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache Miss Analysis (Naive) ['gmfing]

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache blocksize K =64 B =8 doubles

" Cache size is much smaller than n

« Each iteration:

1
X

on
= —+n —?mlsses

. n 9
« Total misses: — = =

\ 3"
once per product matrix element
21

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

+ Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

Al\ __ A\L
—_— - \ " —_— - -)
A1 Gz iz Ayd
a a,,' a a4 A A . . .
A= 22 = =" 12], with B defined similarly.
31 ~ U327 A3z d3g. A,y A,y

Qg1 Qyp " Ayz Agy
A.

(AllBll +A12821) (A11812 + AlEBEE)
(A21511 +A22521) (A21512 + AZEBZE)

AB=[

22

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

material

This is extra
Linear Algebra to the Rescue (2) [(non-testabla]

Ci Ciz Cia Cig A A1z Atg A1g By B12 B3 By

: : 2] A
Coo Cu| [[Aa) A A A

B21 | Bz3
Cot Cso Cis Cat| |Awt A Aw Au| |Bs @ By | By
Ca Cs2 Cu3 Cua Ay Ao Ay3 EA144 By [E 2\ By B,

Matrices of size n X n, split into 4 blocks of size r (n=4r)

===

Ca1 | Caz

Cy, =A,B1, +AyByy + AyBy, +ALB,, = 20 AL B

« Multiplication operates on small “block” matrices
"= Choose size so that they fit in the cache!
= This technique called “cache blocking”

23

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Blocked Matrix Multiply

+ Blocked version of the naive algorithm:

move by rxr BLOCKS now

for (1 = 0; 1 < n; 1 += 1)
for (3 = 0; § < n; § += 1) loop ower blode
for (k = 0; k < n; k += r) _J mactrice s

block matrix multiplication

for (ib = 1; ib < i+4r; ib++)

logp within for (jb = j; jb < j+r; Jb++)

= T for (kb = k; kb < k+r; kb++)

Clib] [Jb] += Alib] [kb]*B[kb] [Jb];

" r = block matrix size (assume r divides n evenly)

24

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 374 < cache size

/r2 elements per block, 8 per cache block fn/rjblocks\
2 Eacb/block iteration: W EEEER
2 —
- % misses per block o X
2n _ r* nr
| [— _— T —
r 8 4

n/r blocks in row and column

25

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 37r% < cache size

/r2 elements per block, 8 per cache block fn/rjblocks\
2 Eacb/block iteration: M EREER
2
T : —
" — Misses per block X
2n _ r* nr
m Y — =
r 8 4
n/r blocks in row and column u EREEN

= Afterwards in cache
(schematic)

1
X

26

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 37r% < cache size

/r2 elements per block, 8 per cache block fn/rjblocks\
2 Eacb/block iteration: W EEEER
2 —
- % misses per block o X
2n _ r* nr
m Y — =

T 8 4
<_\ n/r blocks in row and column
« Total misses:

nr n\ 2 _n3
> () =
27

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Matrix Multiply Visualization

+» Heren =100, C =32 KiB, r =30
Naive:

Blocked:

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

28

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Cache-Friendly Code

+» Programmer can optimize for cache performance
®" How data structures are organized

®" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”
" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.
= Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)

- Use small strides (spatial locality)
- Focus on inner loop code

29

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Core i7 Haswell

The Memory Mountain 2.1 GHz

32 KB L1 d-cache
256 KB L2 cache

Aggressive 8 MB L3 cache
prefetching 64 B block size
16000
<
[a1]
2 12000
H
£ 10000
=2
2
ﬁ 8000 ‘ Ridges
o —-of temporal
€ 6000 > of temp
locality
4000
2000
Slopes
of spatial 32k
localit 128k
y B 512k
2m
s7 8m
Stride (x8 bytes) Size (bytes)

32m

s11
128m

30

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2024

Learning About Your Machine

<+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Example: cat /sys/devices/system/cpu/cpuO/cache/index*/size
+» Windows:
" wmic memcache get <query> (all valuesin KB)

" Example: wmic memcache get MaxCacheSize

+» Modern processor specs:

31

http://www.7-cpu.com/

	Caches IV�CSE 351 Autumn 2024
	Relevant Course Information
	Reading Review
	What about writes? (Review)
	Write-back, Write Allocate Example
	Write-back, Write Allocate Example (1st access)
	Write-back, Write Allocate Example (1st access)
	Write-back, Write Allocate Example (1st access)
	Write-back, Write Allocate Example (2nd access)
	Write-back, Write Allocate Example (2nd access)
	Write-back, Write Allocate Example (3rd access)
	Write-back, Write Allocate Example (3rd access)
	Cache Simulator
	Polling Question
	Optimizations for the Memory Hierarchy
	Example: Matrix Multiplication
	Matrices in Memory
	Naïve Matrix Multiply
	Cache Miss Analysis (Naïve)
	Cache Miss Analysis (Naïve)
	Cache Miss Analysis (Naïve)
	Linear Algebra to the Rescue (1)
	Linear Algebra to the Rescue (2)
	Blocked Matrix Multiply
	Cache Miss Analysis (Blocked)
	Cache Miss Analysis (Blocked)
	Cache Miss Analysis (Blocked)
	Matrix Multiply Visualization
	Cache-Friendly Code
	The Memory Mountain
	Learning About Your Machine

