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Relevant Course Information

+» Lab 3 due Mon 11/11 (Encouraged to aim for Fri 11/08)

" You have everything you need to do the lab as of 10/28
= Last part of HW15 is useful for Lab 3

+» HW17 due Friday (11/08) @ 11:59 pm

+» Mid-quarter Survey due Saturday (11/09)

+» HW18 due Wednesday (11/13) @ 11:59 pm
» HW19 due Friday (11/15) @ 11:59 pm

" Lab 4 preparation

% Lab 4 coming soon!

" Cache parameter puzzles and code optimizations
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Reading Review

+» Terminology:
= Write-hit policies: write-back, write-through
= Write-miss policies: write allocate, no-write allocate
" Cache blocking
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What about writes? (Review)

+ Multiple copies of data may exist:

" multiple levels of cache and main memory

» What to do on a write-hit (data already in cache)?
= Write-through: write immediately to next level

= Write-back: defer write to next level until line is evicted (replaced)
- Must track which cache lines have been modified (“dirty bit”)

What to do on a write-miss (data not in cache)?

= Write allocate: (“fetch on write”) load into cache, then execute the
write-hit policy
- Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

‘0

L)

Typical caches:
= Write-back + Write allocate, usually

)
*

= Write-through + No-write allocate, occasionally
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Write-back, Write Allocate Example

Note: While unrealistic, this example assumes that all requests have
offset 0 and are for a block’s worth of data.

Valid Dirty Tag Block Contents
Cache: 1|10 G OxXxBEEF
4

There is only one set in this tiny cache,
so the tag is the entire block number!

Block X
Memory: Num :
F 0xCAFE

G OxBEEF
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Write-back, Write Allocate Example (15t access)

Not valid x86, just using block num instead
[ of full byte address to keep the example simple

1) mov S$SOxFACE, (F)

Write Miss!
Valid Dirty Tag Block Contents
Cache: 1110 G OxXxBEEF
Step 1: Bring F into
cache
Block X
Memory: Num :
F OxCAFE

G OxBEEF
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Write-back, Write Allocate Example (15t access)

1) mov S$SOxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1|10 F O0xCAFE
Block X
Memory: Num :
F OxCAFE
G OxXBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit
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Write-back, Write Allocate Example (15t access)

1) mov S$SOxFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1] 11 F OxFACE
Block X
Memory: Num :
F OxCAFE
G OxXBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit
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Write-back, Write Allocate Example (2 access)

1) mov $OxFACE, (F) 2)mov $OxFEED, (F)

Write Miss Write Hit!
Valid Dirty Tag Block Contents
Cache: 1] 11 F OxFACE
Block X
Memory: Num :
F OxCAFE
G OxBEEF

Step: Write
OxFEED to cache
only (and set the
dirty bit)
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Write-back, Write Allocate Example (2 access)

1) mov $OxFACE, (F) 2)mov $OxFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1111 F OXFEED
Block X
Memory: Num :
F OxCAFE

G OxBEEF

10
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Write-back, Write Allocate Example (3 access)

1) mov SOxFACE, (F) 2)mov S$OxFEED, (F) 3)mov (G), %$ax

Write Miss Write Hit Read Miss!
Valid Dirty Tag Block Contents
Cache: 1111 F OxXFEED

Step 1: Write F back
to memory since it

is dirty
Block X
Memory: Num :
F O0xCAFE

G OxBEEF

11
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Write-back, Write Allocate Example (3 access)

1) mov SOxFACE, (F) 2)mov S$OxFEED, (F) 3)mov (G), %$ax

Write Miss Write Hit Read Miss
Valid Dirty Tag Block Contents
Cache: 1110 G OxBEEF

Step 1: Write F back
to memory since it

is dirty
Block :
Memory: Num : Step 2: Bring G into

F OXFEED the cache so that
. we can copy it into
: Zax

G OxBEEF
: 12
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Cache Simulator

+» Want to play around with cache parameters and
policies? Check out our cache simulator!

" https://courses.cs.washington.edu/courses/cse351/cachesim/

+» Way to use:

= Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions
= Self-guided Cache Sim Demo in section

= Will be used in HW19 — Lab 4 Preparation

13
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Polling Question

« Which of the following cache statements is FALSE?
= Vote in Ed Lessons

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

14
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Optimizations for the Memory Hierarchy

+» Write code that has locality!
= Spatial: access data contiguously

" Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" Loop transformations

15
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Example: Matrix Multiplication

C A B

mn
Cij = E ik -k A«
k=1

16
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Matrices in Memory

+» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

17
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Naive Matrix Multiply

# move along rows of A
for (1 = 0; 1 < n; 1++)
# move along columns of B
for (jJ = 0; jJ < n; J++)
# EACH k loop reads row of A,

# Also read & write C(i,j) n times

col of B

for (k = 0; k < n; k++)
Clz][3] += A[1][k] * Blk]lI[3];
C(i,j) C(i,j) A(i,:)
N — N _|_ I X B(:,j)

18
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Cache Miss Analysis (Naive) ['gno””g]

matrix c

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size K =64 B =8 doubles

® Cache size is much smaller than n

« Each iteration:

1
X

n on .
" —4+ N =—misses
8 8

19
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Cache Miss Analysis (Naive) ['gno””g]

matrix c

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size K =64 B =8 doubles

" Cache size is much smaller than n

«» Each iteration:
m = X
= 2+n =—nm|sses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide
20
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Cache Miss Analysis (Naive) ['gmfing]

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache blocksize K =64 B =8 doubles

" Cache size is much smaller than n

« Each iteration:

1
X

on
= —+n —?mlsses

. n 9
« Total misses: — = =

\ 3"
once per product matrix element
21
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This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

+ Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

Al\ __ A\L
—_— - \ " —_— - - )
A1 Gz iz Ayd
a a,,' a a4 A A . . .
A= 22 = =" 12], with B defined similarly.
31 ~ U327 A3z d3g. A,y A,y

Qg1 Qyp " Ayz  Agy
A.

(AllBll +A12821) (A11812 + AlEBEE)
(A21511 +A22521) (A21512 + AZEBZE)

AB=[

22
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material

This is extra
Linear Algebra to the Rescue (2) [(non-testabla]

Ci Ciz Cia Cig A A1z Atg A1g By B12 B3 By

: : 2 ] A
Coo Cu| [[Aa) A A A

B21 | Bz3
Cot Cso Cis Cat| |Awt A Aw Au| |Bs @ By | By
Ca Cs2 Cu3 Cua Ay Ao Ay3 EA144 By [E 2\ By B,

Matrices of size n X n, split into 4 blocks of size r (n=4r)

===

Ca1 | Caz

Cy, =A,B1, +AyByy + AyBy, +ALB,, = 20 AL B

« Multiplication operates on small “block” matrices
"= Choose size so that they fit in the cache!
= This technique called “cache blocking”

23
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Blocked Matrix Multiply

+ Blocked version of the naive algorithm:

# move by rxr BLOCKS now

for (1 = 0; 1 < n; 1 += 1)
for (3 = 0; § < n; § += 1) loop ower blode
for (k = 0; k < n; k += r) _J mactrice s

# block matrix multiplication

for (ib = 1; ib < i+4r; ib++)

logp within for (jb = j; jb < j+r; Jb++)

= T for (kb = k; kb < k+r; kb++)

Clib] [Jb] += Alib] [kb]*B[kb] [Jb];

" r = block matrix size (assume r divides n evenly)

24
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Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 374 < cache size

/r2 elements per block, 8 per cache block fn/rjblocks\
2 Eacb/block iteration: W EEEER
2 —
- % misses per block o X
2n _ r*  nr
| [— _— T —
r 8 4

n/r blocks in row and column

25
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Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 37r% < cache size

/r2 elements per block, 8 per cache block fn/rjblocks\
2 Eacb/block iteration: M EREER
2
T : —
" — Misses per block X
2n _ r*  nr
m Y — =
r 8 4
n/r blocks in row and column u EREEN

= Afterwards in cache
(schematic)

1
X

26
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Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 37r% < cache size

/r2 elements per block, 8 per cache block fn/rjblocks\
2 Eacb/block iteration: W EEEER
2 —
- % misses per block o X
2n _ r*  nr
m Y — =

T 8 4
<_\ n/r blocks in row and column
« Total misses:

nr n\ 2 _n3
> () =
27
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Matrix Multiply Visualization

+» Heren =100, C =32 KiB, r =30
Naive:

Blocked:

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

28
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Cache-Friendly Code

+» Programmer can optimize for cache performance
®" How data structures are organized

®" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”
" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.
= Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)

- Use small strides (spatial locality)
- Focus on inner loop code

29
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Core i7 Haswell

The Memory Mountain 2.1 GHz

32 KB L1 d-cache
256 KB L2 cache

Aggressive 8 MB L3 cache
prefetching 64 B block size
16000
<
[a1]
2 12000
H
£ 10000
=2
2
ﬁ 8000 ‘ Ridges
o —-of temporal
€ 6000 > of temp
locality
4000
2000
Slopes
of spatial 32k
localit 128k
y B 512k
2m
s7 8m
Stride (x8 bytes) Size (bytes)

32m

s11
128m

30
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Learning About Your Machine

<+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Example: cat /sys/devices/system/cpu/cpuO/cache/index*/size
+» Windows:
" wmic memcache get <query> (all valuesin KB)

" Example: wmic memcache get MaxCacheSize

+» Modern processor specs:

31
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