
CSE351, Autumn 2024L18: Caches III

Caches III
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

CSE351, Autumn 2024L18: Caches III

Relevant Course Information

 HW16 due TONIGHT, Wednesday (11/06) @ 11:59 pm
 Lab 3 due Mon 11/11
 Encouraged to aim for Fri 11/08, actual deadline Mon 11/11
 You have everything you need to do the lab as of 10/28
 Last part of HW15 is useful for Lab 3

 HW17 due Friday (11/08) @ 11:59 pm
 Mid-quarter Survey due Saturday (11/09)
 HW18 due Wednesday (11/13) @ 11:59 pm

2

CSE351, Autumn 2024L18: Caches III

Making memory accesses fast!

 Cache basics
 Principle of locality
 Memory hierarchies
 Cache organization
 Direct-mapped (sets; index + tag)
 Associativity (ways)
 Replacement policy
 Handling writes

 Program optimizations that consider caches

3

CSE351, Autumn 2024L18: Caches III

Reading Review

 Terminology:
 Associativity: sets, fully-associative cache
 Replacement policies: least recently used (LRU)
 Cache line: cache block + management bits (valid, tag)
 Cache misses: compulsory, conflict, capacity

4

CSE351, Autumn 2024L18: Caches III

Review: Direct-Mapped Cache

 Hash function: (block number)
mod (# of blocks in cache)
 Each memory address maps to

exactly one index in the cache
 Fast (and simpler) to find a block

5

Block Num Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 00
01 11
10 01
11 01

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Autumn 2024L18: Caches III

Direct-Mapped Cache Problem

 What happens if we access the
following addresses?
 8, 24, 8, 24, 8, …?
 Conflict in cache (misses!)
 Rest of cache goes unused

 Solution?

6

Block Num Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

Here 𝐾𝐾 = 4 B
and 𝐶𝐶/𝐾𝐾 = 4

CSE351, Autumn 2024L18: Caches III

Associativity: A Solution!
 What if we could store any data in any place in the cache?
 More complicated hardware = more power consumed, slower

 So we combine the two ideas:
 Each address maps to exactly one set
 Each set can store block in more than one way within the set

7

0
1
2
3
4
5
6
7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct-mapped fully associative

CSE351, Autumn 2024L18: Caches III

Cache Associativity (𝐸𝐸)

 Associativity (𝐸𝐸): number of ways to store in each set
 Such a cache is called an “𝐸𝐸-way set associative cache”
 We now index into cache sets, of which there are 𝑆𝑆 = 𝐶𝐶/𝐾𝐾/𝐸𝐸
 Use lowest log2 𝐶𝐶/𝐾𝐾/𝐸𝐸 = 𝒔𝒔 bits of block address

• Direct-mapped: 𝐸𝐸 = 1, so 𝒔𝒔 = log2 𝐶𝐶/𝐾𝐾 as we saw previously
• Fully associative: 𝐸𝐸 = 𝐶𝐶/𝐾𝐾, so 𝒔𝒔 = 0 bits

8

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕𝒕) Index (𝒔𝒔) Offset (𝒌𝒌)

Note: The textbook
uses “b” for offset bits

CSE351, Autumn 2024L18: Caches III

Example Placement

 Where would data from address 0x1833 be placed?
 Binary: 0b 0001 1000 0011 0011

9

𝒔𝒔 = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕𝒕) Offset (𝒌𝒌)𝒎𝒎-bit address: Index (𝒔𝒔)

𝒔𝒔 = log2 𝐶𝐶/𝐾𝐾/𝐸𝐸 𝒌𝒌 = log2 𝐾𝐾𝒕𝒕 = 𝒎𝒎–𝒔𝒔–𝒌𝒌

𝒔𝒔 = ? 𝒔𝒔 = ?

CSE351, Autumn 2024L18: Caches III

Block Placement and Replacement
 Any empty block in the correct set may be used to store block
 Valid bit for each cache block indicates if data is valid (1) or mystery (0) data

 If there are no empty blocks, which one should we replace?
 No choice for direct-mapped caches
 Caches typically use something close to least recently used (LRU)

(hardware usually implements “not most recently used”)

10

Set V Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set V Tag Data

0

1

2

3

Set V Tag Data

0

1

2-way set associative 4-way set associative

CSE351, Autumn 2024L18: Caches III

Polling Questions

 We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?
 Vote in Ed Lessons

A. 2
B. 4
C. 8
D. 16
E. We’re lost…

 If addresses are 16 bits wide, how wide is the Tag
field?

11

CSE351, Autumn 2024L18: Caches III

● ● ●

General Cache Organization (𝑆𝑆, 𝐸𝐸, 𝐾𝐾)

12

𝐸𝐸 = blocks (or lines) per set

𝑆𝑆 sets
= 2𝒔𝒔

set

line (block plus
management bits)

Cache size:
𝐶𝐶 = 𝐾𝐾 × 𝐸𝐸 × 𝑆𝑆 data bytes
(doesn’t include V or Tag)

● ● ●

● ● ●

● ● ●

●
●
●

●
●
●

●
●
●

cache

0 1 2 K-1● ● ●TagV

valid bit
𝐾𝐾 = bytes per block

CSE351, Autumn 2024L18: Caches III

Notation Review

 We just introduced a lot of new variable names!
 Please be mindful of block size notation when you look at

past exam questions or are watching videos

13

Parameter Variable Formulas

Block size 𝐾𝐾 (𝐵𝐵 in book)

𝑀𝑀 = 2𝒎𝒎 ↔𝒎𝒎 = log2 𝑀𝑀
𝑆𝑆 = 2𝒔𝒔 ↔ 𝒔𝒔 = log2 𝑆𝑆
𝐾𝐾 = 2𝒌𝒌 ↔ 𝒌𝒌 = log2 𝐾𝐾

𝐶𝐶 = 𝐾𝐾 × 𝐸𝐸 × 𝑆𝑆
𝒔𝒔 = log2 𝐶𝐶/𝐾𝐾/𝐸𝐸
𝒎𝒎 = 𝒕𝒕 + 𝒔𝒔 + 𝒌𝒌

Cache size 𝐶𝐶
Associativity 𝐸𝐸

Number of Sets 𝑆𝑆
Address space 𝑀𝑀
Address width 𝒎𝒎
Tag field width 𝒕𝒕

Index field width 𝒔𝒔
Offset field width 𝒌𝒌 (𝒃𝒃 in book)

CSE351, Autumn 2024L18: Caches III

Example Cache Parameters Problem

 1 KiB address space, 125 cycles to go to memory.
Fill in the following table:

14

Cache Size 64 B
Block Size 8 B

Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits

Index Bits
Offset Bits

AMAT

CSE351, Autumn 2024L18: Caches III

Cache Read

15

0 1 2 𝐾𝐾-1TagV

𝒕𝒕 bits 𝒔𝒔 bits 𝒌𝒌 bits
Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆𝑆 = # sets
= 2𝒔𝒔

𝐸𝐸 = blocks/lines per set

𝐾𝐾 = bytes per block

CSE351, Autumn 2024L18: Caches III

Example: Direct-Mapped Cache (𝐸𝐸 = 1) (step 1)

16

Direct-mapped: One line per set
Block Size 𝐾𝐾 = 8 B

𝒕𝒕 bits 0…01 100
Address of int:

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

find set

𝑆𝑆=2𝒔𝒔 sets

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

CSE351, Autumn 2024L18: Caches III

17

𝒕𝒕 bits 0…01 100
Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size 𝐾𝐾 = 8 B

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

Example: Direct-Mapped Cache (𝐸𝐸 = 1) (step 2)

CSE351, Autumn 2024L18: Caches III

18

𝒕𝒕 bits 0…01 100
Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐾𝐾 = 8 B

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

Example: Direct-Mapped Cache (𝐸𝐸 = 1) (step 3)

CSE351, Autumn 2024L18: Caches III

Example: Set-Associative Cache (𝐸𝐸 = 2) (step 1)

19

𝒕𝒕 bits 0…01 100
Address of short int:

find set

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

2-way: Two lines per set
Block Size 𝐾𝐾 = 8 B

1) Locate set

CSE351, Autumn 2024L18: Caches III

0 1 2 7TagV 3 6540 1 2 7tagV 3 654

20

𝒕𝒕 bits 0…01 100
compare both

valid? + match: yes = hit

block offset

Tag

2-way: Two lines per set
Block Size 𝐾𝐾 = 8 B Address of short int:

Example: Set-Associative Cache (𝐸𝐸 = 2) (step 2)

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

CSE351, Autumn 2024L18: Caches III

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

21

𝒕𝒕 bits 0…01 100

valid? + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way: Two lines per set
Block Size 𝐾𝐾 = 8 B

Example: Set-Associative Cache (𝐸𝐸 = 2) (step 3)

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

CSE351, Autumn 2024L18: Caches III

Types of Cache Misses: 3 C’s!
 Compulsory (cold) miss
 Occurs on first access to a block

 Conflict miss
 Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot
• e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

 Direct-mapped caches have more conflict misses than
𝐸𝐸-way set-associative (where 𝐸𝐸 > 1)

 Capacity miss
 Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

 Note: Fully-associative only has Compulsory and Capacity misses

22

CSE351, Autumn 2024L18: Caches III

Example Code Analysis Problem
 Assuming the cache starts cold (all blocks invalid) and sum, i,

and j are stored in registers, calculate the miss rate:
 𝑚𝑚 = 12 bits, 𝐶𝐶 = 256 B, 𝐾𝐾 = 32 B, 𝐸𝐸 = 2

23

#define SIZE 8
long ar[SIZE][SIZE], sum = 0; // &ar=0x800
for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

Slightly more complex example posted in the video link

	Caches III�CSE 351 Autumn 2024
	Relevant Course Information
	Making memory accesses fast!
	Reading Review
	Review: Direct-Mapped Cache
	Direct-Mapped Cache Problem
	Associativity: A Solution!
	Cache Associativity (𝐸)
	Example Placement
	Block Placement and Replacement
	Polling Questions
	General Cache Organization (𝑆, 𝐸, 𝐾)
	Notation Review
	Example Cache Parameters Problem
	Cache Read
	Example: Direct-Mapped Cache (𝐸 = 1) (step 1)
	Example: Direct-Mapped Cache (𝐸 = 1) (step 2)
	Example: Direct-Mapped Cache (𝐸 = 1) (step 3)
	Example: Set-Associative Cache (𝐸 = 2) (step 1)
	Example: Set-Associative Cache (𝐸 = 2) (step 2)
	Example: Set-Associative Cache (𝐸 = 2) (step 3)
	Types of Cache Misses: 3 C’s!
	Example Code Analysis Problem

