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HEARTBLEED MUST
BE THE \JORST WEB
SECURITY LAPSE EVER.

WORST 50 FAR.
GVE US TIME.

3]

T MEAN, THIS BUG ISNT
Just BROKEN; ENCRYPTION.

IT LETS WJEBSITE VISITORS
MAKE A SERVER DISPENSE
RANDOM MEMORY CONTENTS.
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ITS NOT JUST KEYS.
ITS TRAFRC DATA.
EMAILS. PASSLIORDS.
EROTIC FANFCTION.

15 EVERYTFHING
(DI'WQ“J}'SED?

WELL, THE ATTACK 15
UMITED TO DATA SIORED
IN COMPUTER MEMORY.

50 PAPER 15 SAFE.
AND CLAY TABLETS.

OUR IMAGINATIONS, Too. |
SEE, WELL BE FINE.

Iy

Alt text: | looked at some of the data dumps from vulnerable sites, and
it was ... bad. | saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/



http://xkcd.com/1513/
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Relevant Course Information
+» HW14 due TONIGHT, Wednesday (10/30) @ 11:59 pm

< No Lecture on Fri 11/01 (No HW/Reading due)
- T

= HW15 not due until next Monday (11/04)
= HW16 d¥ hext Wed (11/06)

«» Midterm Exam: See Ed Post and exams page

" Take home, on Gradescope
® Open: Thursday 10/31 at 5pm; Due: Saturday 11/02 at 11:59pm
= Review in section this week (10/31)

+» Lab 3 due Mon 11/11

" Encouraged to aim for Fri 11/08, actual deadline Mon 11/11

" You have everything you need to do the lab as of last lecture!
= Last part of HW15 (due Mon 11/04) is useful for Lab 3


https://edstem.org/us/courses/61460/discussion/5588759
https://courses.cs.washington.edu/courses/cse351/24au/exams/#midterm
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S| prefixes are ambiguous if base 10 or 2
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Aside: Units and Prefixes (Review)

|IEC prefixes are unambiguously base 2

SIZE PREFIXES (10 for Disk, Communicafion; 2*for-Memory) >\

Here focusing on large numbers (exponents > 0)

Note that 103 = 210
|00 0O

SI Size Prefix Symbol | [IEC Size Prefix
103 . Kilo- < K )/ 210 Kibi-
106 Mega- ™ 220 Mebi-
10° Giga- G 230 P Gibi-
104 Tera- T 2 Tebi-
1015 Peta- P 250 Pebi-
1018 Exa- E 299 Exbi-
1021 Zetta- z / 279 Zebi-
1024 Yotta- Y \ 280 Y obi-

CSE351, Autumn 2024
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How to Remember?

+» Will be given to you on Final reference sheet

/

<« Mnemonics

" There unfortunately isn’t one well-accepted mnemonic
 But that shouldn’t stop you from trying to come with one!

= Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

= Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

= xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
- https://xkcd.com/992/

" Post your best on Ed Discussion!



https://xkcd.com/992/
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Reading Review

+» Terminology:
® Caches: cache blocks, cache hit, cache miss
" Principle of locality: temporal and spatial

= Average memory access time (AMAT): hit time, miss penalty,
hit rate, miss rate
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Review Questions

7

« Convert the following to or fro\q\ IEC:
27;,512%@00@ = Zq' 2 =/ bodles

1)
for the following system properties:

HT = Hittime of 1ns AMAT = HT +AR-MP

= Miss rate of 1% = . lbOv\g
e Lns w001 - 7718,
N\? Miss penalty of 100 ns
;l\,\g Al _/,LV\S

g Zy\g
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How does execution time grow with SIZE?
#dobine S1Z r: D 2 O

int array[SIZE];
int sum = 0O;

—Ffor (int i = 0; i < 200000; i++)
= 0; J < SIZE; j++) ({

{far (1nt 7]
T sum += arrayl[]J];

}

D

Time
—_—|

Plot:

Executi

“SIZE~ 7
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Actual Data
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Making memory accesses fast!

+» Cache basics

+ Principle of locality
<~ Memory hierarchies
+» Cache organization

+» Program optimizations that consider caches

CSE351, Autumn 2024
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4
Processor-Memory Gap Mﬁ) Pax/@%)@

100,000

“Moore’s Law”
10,000t WProc | o eeiea _

55%/year
(2X/1.5yr) \v

g 1000 -
o
:
©  100-
o
10
1 I I e — 1 |
1980 1985 1990 1995 2000 2005 2010
vear DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Il has two cache levels on chip (2X/10yrs)

10
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Problem: Processor-Memaory Bottleneck
2dd g &rax) ZIrbX

Processor performance

doubled about .
everv 18 months Bus latency / bandwidth

evolved much slower
Main
CPU | Reg

|

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Byt I
~_/y_ /cy ytes/cycle

Latency
100-200 cycles (30-60ns)
—

Problem: lots of waiting on memory

cycle: single machine step (fixed-time) 11
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Problem: Processor-Memory Bottleneck

Processor performance

doubled about
every 18 months

CPU | Reg

Core 2 Duo:
Can process at least
256 Bytes/cycle

sandwich
to modth

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time)

Main
Memory

¥ ONE DAY SALE

- - - p
S - AARCE MASS o !
AVOCADOS  g..'%
AR *

Lo
o

grocery store.

12



YA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2024

Cache @

+ Pronunciation: “cash”

= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions_
(i-cache/I$) or data (d-cache/D$)

" More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, 1/0O cache, etc.)

13
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General Cache Mechanics (Review
C P A 0 (Brsx) Dorbx
A ?@, y,

* Smaller, faster, more expensive

Cache 7 9 14 3 memory

* Caches a subset of the blocks
Asin j\
ﬂ Data is copied in block-sized

block nums transfer units
(not dafa) T\

N

Memory 0 1 2 3 * Larger, slower, cheaper memory.

* Viewed as partitioned into “blocks”

4 5 6 7
8 9 10 11
12 13 14 15

14



YA UNIVERSITY of WASHINGTON L16: Caches |

CSE351, Autumn 2024

General Cache Concepts: Hit (Review) N

A W
CP D
@ Request: 14 U)Data in block b is needed
(£
- ‘ Block b is in cache:
Cache 7 & [E bl
@Data is returned to CPU

Memory 0 1 2 3

4 5 6 7

9 10 11

12 13 14 15

O 000000000000 OCOCG®OOO

15
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0]
%) . .
Request: 12 (D Data in block b is needed
U
Cach - 5 12 3 Block b is not in cache:
ache Miss!
/)
CL)Block b is fetched from
@ 12 Request: 12 @
memory
(D Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
9 10 11
determines which block
12 13 14 15 gets evicted (victim)
0000000000 00O0OCOGOG OO

@Data is returned to CPU

CSE351, Autumn 2024

_Miss (Review) Q

16
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Why Caches Work (Review)

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

17
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Why Caches Work (Review)

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently Q

block

+» Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

18
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Why Caches Work (Review)

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

+ Temporal locality: - block
= Recently referenced items are likely ﬂ
to be referenced again in the near future W
patial locality: lock

" Jtems with nearby addresses tend
to be referenced close together in time

+» How do caches take advantage of this?

19
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Example: Any Locality?

return sum;

<+ Data:
" Temporal:
= Spatial:

» Instructions:

" Temporal:
= Spatial:

sum referenced in each iteration
consecgutive elements of array a [ ] accessed

cycle through loop repeatedly
reference instructions in sequence

20
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Locality Example #1 Code

int sum _array rows(int a[M] [N])

{ o o ’\L L—(‘_O\s
int i, j, sum = 0; A0
for (i = 0; i < M; i++)

for (j = 0; j < N; J++)
sum += al[il[3];
return sum;

}

21



YA UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Autumn 2024

Locality Example #1 = s

s "

{

int sum array rows (int a[M][N])

int i, j, sum = 0;
for (1 = 0; i < M; 1i++)
for (7 = 0; j < N
sum += a]

F)
&[03?03 )
O |

return sum;

O 2

Note: 76 is just one possible starting address of array a

alllall/la \a]la|al|a|]alal|a]a

COY [ LOLOT YLOT (2] t2T (1112 |[2]|[2]]I
(O ILLIN2IA 03] L0 TL (20 (03100 |[1]|[2]][3]
v\JyVv 1 I

92 108

a[0][3]
al[1][3]
a[2][3]
Access Pattern: 1)| a[0] [0]
stride="7 2yl al0]11[1]
3) al0] [2]
:l‘ 4)] al0] [3]
5)] all] [0]
6)] all][1]
S 7) all] [2]
\ 8)| al1][3]
9)] al2][0]
10)| al2] [1]
11)| al2][2]
12)) al2] [3]

22
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Locality Example #2 Code

{

int sum array cols(int a[M] [N])

int i, j, sum = 0;
for (j = 0; jJ < N; Jj++)
for (1 = 0; 1 < M; 1++)

sum += afli][]];

return sum;

23
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Locality Example #2

int sum array cols(int afl M=3,N=4

«c ? ¢ a[0](0] || al0]1]| |alo](2] | |a[0](3]

a[1][0]||al1l][1]] |al1][2]]|al1][3]

for (7 = 0; 7 < N; J++)
fFor (i = 0; i < M;&lo+) al21[01 || af21i11 | [al21[21| | al2][3]
sum += ali] [3];
) Access Pattern: 1)| a[0][0]
return sum; CAC 3(03 stride = ? 2y a[1110]
: a U O - 3)[a2110]
3 2.0 9)[al0]11]
yout in Memor 7\ [\\ S)|alllfl]
’ a a a a a a a 6) a[Z] [1]
g 03[ 109 13}r21 | 23 [1]([211\[2] [2]{12] . N|alo)iz]
(21| (31|01 fta|c21{r31)\ro1 {21 |21 3] ' 8)| all112]
i 1* O o) at2] (2]
9U 10 10)[ a[0] [3]
11)[ ar1113]
12)[ar2113]

24
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Gv.d S
Locality Example #3 Co e
Co\3
int sum array 3D(int a[M N][L])
{
int i, J, k, sum = 0O;
for (i = 0; 1 < N; i++)
for (J = 0; 7 < L; Jj++)
for (k = 0; k < M; k++)
sum += al[k][1i]1[3]1;
return sum;
}

+» What is wrong
with this code?

« How can it be
fixed?

a[2][0][0]

a[2][0][1]] [a[2][0][2]

a[1][0]

a[2][0][3]

[0]1Ha[11[0][1]1Hal11[0][2]Hal1][0][3]

a[0][0][0]

HalO1[0][1]

a[0][0][2]

In
In

afoj[o](31E=113]

[ EEs

lUJI_IO-lJ-JlJ-JlJ-JI_IO-lJ-JlJ-JLLJI_IO-lJ-JlJ-][S]

a[0][1][0]

Halo][1][1]

a[0][1][2]

ja[onu[z] zrz 3]

IS4l L&

1031

IVITIA] L&

a[0][2][0]

|alol2][1]

|alol[2][2]{]al0][2][3]

25
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Locality Example #3

int sum array 3D(int a[M] [N][L])
{

0;

J, k, sum

/_/>for (1 = 0; i < N; i++)

\\\\\¥ for (J = 0; 7 < L; Jj++)

(Ffor Lg,= 0; k < M; ki+)

int 1,

+» What is wrong

with this code?
s‘h-iéc- N*L

« How can it be

sum += alk][1] 3] .
© oo fixed?
return sum; \ O o INhev looF’ i“’S'}VIAC‘L
J A O _)"'”s-‘v“\de“i-
. K= styide-N¥L
Layout in Memory (M =?,N=3,L=4) ’
pr——
a a a a a a a a a } a a a a a a a a a a a a
[o]|[o][[o]|[o]|[0]]|[O]]|[0O] (O WLy (2| (2] (2 (2| (a e aayfal)(al . o o
(ol (ol [a](a] 2] (2]][2] (2] gLolf ol o1 (ol (a1 taljalyalyal 2212l
(2] | (31| (o] (2] [2]|(3]][O] (B1{foyaly el 31y o1 arjterysryrolalfral|(al
7é 92 108 124 140 156 172
W \\—/—N\/
5"‘\0\ O gr\"d A
26
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Cache Performance Metrics (Review)

+» Huge difference between agch}h'_t and a cach%

" Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

%+ Miss Rate (MR)

" Fraction of memory references not found in cache
(misses / accesses) =11 - Hit Rate ) Hit Hales HT

L 2 CPU
% Hit Time (HT) Miss dakes HT+MP @ D
Y

Cac\f\e
" Time to deliver a block in the cache to the processor

« Includes time to determine whether the block is in the cache

% Miss Penalty (MP)

= Additional time required because of a miss

27
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Cache Performance . .o . 1. ur
(Review) A&T (\-mR) * (AT FAT) o MK

+» Two things hurt the performance of a cache:
Mi : ‘Q ‘T@V/V\RB
" Miss rate and miss penalty (T MB M

« Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

\_/’ . ~—_ _
=+ 99% hit rate twice as good as 97% hit rate!

= Assume HT of 1 clock cycle and IVIP of 100 clock cycles
= 97%: AMAT= 1.+ 0.03 - = [+32=Y clodecycls
=99%: AMAT= L + 0.0 IOD = l“'\‘Zc,\o/‘A c(¢§
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Practice Question

+ Processor specs: goo ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT = HT + MRx MP = | +0.02+50 = 2 doce cydles
= LfOO:FS

«» Which improvement would be best?
A. (overdocking, Toster CPU)

2. clode C‘]d& S= 2W0ps
B. Miss penalty of 40 clock cycles (reduced Mem size)
[ +0.0C 76( ‘{D’ = |8 clode eydas = 240 PS

@ MR of 0.015 misses/instruction (w&e better cyde)
,+@x50 = |35 dode eydhs = 23S 0ps

29
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Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+» Typical performance numbers:
" Miss Rate
- L1 MR =3-10%
- L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.
" Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

" Miss Penalty
« P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

30
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An Example Memory Hierarchy

A a8
<lns 5-10s a
registers
1ns on-chip L1
Smaller, cache (SRAM)
faster,
costlier .
er b te 5-10 ns Off'Chlp I.Z 1-2 min
per by cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper
erbvte 200" ssp 31 days
per by local secondary storage
10'022'0(30 ns Disk (local disks) 66 months = 5.5 years
ms,
1-150 ms remote secondary storage
(distributed file systems, web servers)
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Summary

+~ Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Makes use of temporal and spatial locality

" Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

2 Cache Performance
= |deal case: found in cache (hit)
= Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

32
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