
CSE351, Autumn 2024L16: Caches I

Memory & Caches I
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

http://xkcd.com/1353/

Alt text: I looked at some of the data dumps from vulnerable sites, and
it was ... bad. I saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhäuser Gate. I should probably patch OpenSSL.

http://xkcd.com/1513/

CSE351, Autumn 2024L16: Caches I

Relevant Course Information
 HW14 due TONIGHT, Wednesday (10/30) @ 11:59 pm
 No Lecture on Fri 11/01 (No HW/Reading due)
 HW15 not due until next Monday (11/04)
 HW16 de next Wed (11/06)

 Midterm Exam: See Ed Post and exams page
 Take home, on Gradescope
 Open: Thursday 10/31 at 5pm; Due: Saturday 11/02 at 11:59pm
 Review in section this week (10/31)

 Lab 3 due Mon 11/11
 Encouraged to aim for Fri 11/08, actual deadline Mon 11/11
 You have everything you need to do the lab as of last lecture!
 Last part of HW15 (due Mon 11/04) is useful for Lab 3

2

https://edstem.org/us/courses/61460/discussion/5588759
https://courses.cs.washington.edu/courses/cse351/24au/exams/#midterm

CSE351, Autumn 2024L16: Caches I

Aside: Units and Prefixes (Review)

 Here focusing on large numbers (exponents > 0)
 Note that 103 ≈ 210

 SI prefixes are ambiguous if base 10 or 2
 IEC prefixes are unambiguously base 2

3

CSE351, Autumn 2024L16: Caches I

How to Remember?

 Will be given to you on Final reference sheet

 Mnemonics
 There unfortunately isn’t one well-accepted mnemonic

• But that shouldn’t stop you from trying to come with one!

 Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel
 Kirby Missed Ganondorf Terribly, Potentially Exterminating

Zelda and Yoshi
 xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo

• https://xkcd.com/992/

 Post your best on Ed Discussion!

4

https://xkcd.com/992/

CSE351, Autumn 2024L16: Caches I

Reading Review

 Terminology:
 Caches: cache blocks, cache hit, cache miss
 Principle of locality: temporal and spatial
 Average memory access time (AMAT): hit time, miss penalty,

hit rate, miss rate

5

CSE351, Autumn 2024L16: Caches I

Review Questions

 Convert the following to or from IEC:
 512 Ki-books
 227 cats

 Compute the average memory access time (AMAT)
for the following system properties:
 Hit time of 1 ns
 Miss rate of 1%
 Miss penalty of 100 ns

6

CSE351, Autumn 2024L16: Caches I

How does execution time grow with SIZE?

7

int array[SIZE];
int sum = 0;

for (int i = 0; i < 200000; i++) {
for (int j = 0; j < SIZE; j++) {
sum += array[j];

}
}

SIZE

Ex
ec

ut
io

n
Ti

m
e

Plot:

CSE351, Autumn 2024L16: Caches I

Actual Data

8

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

Chart1

		1

		2

		8

		16

		32

		65

		128

		256

		512

		768

		1024

		1536

		2048

		3036

		4096

		8192

0.01

0.01

0.02

0.02

0.05

0.08

0.15

0.29

0.56

0.83

1.13

5.23

8.61

14.49

20.03

40.8

232_cache_data

		1		0.01

		2		0.01

		8		0.02

		16		0.02

		32		0.05

		65		0.08

		128		0.15

		256		0.29

		512		0.56

		768		0.83

		1024		1.13

		1536		5.23

		2048		8.61

		3036		14.49

		4096		20.03

		8192		40.8

232_cache_data

		

CSE351, Autumn 2024L16: Caches I

Making memory accesses fast!

 Cache basics
 Principle of locality
 Memory hierarchies
 Cache organization
 Program optimizations that consider caches

9

CSE351, Autumn 2024L16: Caches I

Processor-Memory Gap

10

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CSE351, Autumn 2024L16: Caches I

Problem: Processor-Memory Bottleneck

11

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory
cycle: single machine step (fixed-time)

CSE351, Autumn 2024L16: Caches I

Problem: Processor-Memory Bottleneck

12

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

CSE351, Autumn 2024L16: Caches I

Cache 💰💰

 Pronunciation: “cash”
 We abbreviate this as “$”

 English: A hidden storage space
for provisions, weapons, and/or treasures

 Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/I$) or data (d-cache/D$)
 More generally: Used to optimize data transfers between

any system elements with different characteristics (network
interface cache, I/O cache, etc.)

13

CSE351, Autumn 2024L16: Caches I

General Cache Mechanics (Review)

14

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory

• Caches a subset of the blocks

CSE351, Autumn 2024L16: Caches I

General Cache Concepts: Hit (Review)

15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU

CSE351, Autumn 2024L16: Caches I

General Cache Concepts: Miss (Review)

16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU

CSE351, Autumn 2024L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

17

CSE351, Autumn 2024L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

18

block

CSE351, Autumn 2024L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
 Items with nearby addresses tend

to be referenced close together in time

 How do caches take advantage of this?
19

block

block

CSE351, Autumn 2024L16: Caches I

Example: Any Locality?

 Data:
 Temporal: sum referenced in each iteration
 Spatial: consecutive elements of array a[] accessed

 Instructions:
 Temporal: cycle through loop repeatedly
 Spatial: reference instructions in sequence

20

sum = 0;
for (i = 0; i < n; i++)
{

sum += a[i];
}
return sum;

CSE351, Autumn 2024L16: Caches I

Locality Example #1 Code

21

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}

CSE351, Autumn 2024L16: Caches I

Locality Example #1

22

Access Pattern:
stride = ?

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]

10) a[2][1]
11) a[2][2]
12) a[2][3]

CSE351, Autumn 2024L16: Caches I

Locality Example #2 Code

23

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}

CSE351, Autumn 2024L16: Caches I

Locality Example #2

24

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}

76 92 108

Layout in Memory
a

[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

M = 3, N=4
a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]

10) a[0][3]
11) a[1][3]
12) a[2][3]

CSE351, Autumn 2024L16: Caches I

Locality Example #3 Code

 What is wrong
with this code?

 How can it be
fixed?

25

int sum_array_3D(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] m = 0
m = 1

m = 2

CSE351, Autumn 2024L16: Caches I

Locality Example #3

26

⋅ ⋅ ⋅

int sum_array_3D(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

 What is wrong
with this code?

 How can it be
fixed?

Layout in Memory (M = ?, N = 3, L = 4)
a

[0]
[0]
[0]

a
[0]
[0]
[1]

a
[0]
[0]
[2]

a
[0]
[0]
[3]

a
[0]
[1]
[0]

a
[0]
[1]
[1]

a
[0]
[1]
[2]

a
[0]
[1]
[3]

a
[0]
[2]
[0]

a
[0]
[2]
[1]

a
[0]
[2]
[2]

a
[0]
[2]
[3]

a
[1]
[0]
[0]

a
[1]
[0]
[1]

a
[1]
[0]
[2]

a
[1]
[0]
[3]

a
[1]
[1]
[0]

a
[1]
[1]
[1]

a
[1]
[1]
[2]

a
[1]
[1]
[3]

a
[1]
[2]
[0]

a
[1]
[2]
[1]

a
[1]
[2]
[2]

a
[1]
[2]
[3]

76 92 108 124 140 156 172

CSE351, Autumn 2024L16: Caches I

Cache Performance Metrics (Review)

 Huge difference between a cache hit and a cache miss
 Could be 100x speed difference between accessing cache

and main memory (measured in clock cycles)

 Miss Rate (MR)
 Fraction of memory references not found in cache

(misses / accesses) = 1 - Hit Rate

 Hit Time (HT)
 Time to deliver a block in the cache to the processor

• Includes time to determine whether the block is in the cache

 Miss Penalty (MP)
 Additional time required because of a miss

27

CSE351, Autumn 2024L16: Caches I

Cache Performance (Review)

 Two things hurt the performance of a cache:
 Miss rate and miss penalty

 Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty
(abbreviated AMAT = HT + MR × MP)

 99% hit rate twice as good as 97% hit rate!
 Assume HT of 1 clock cycle and MP of 100 clock cycles
 97%: AMAT =
 99%: AMAT =

28

CSE351, Autumn 2024L16: Caches I

Practice Question

 Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

 Which improvement would be best?
A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

29

CSE351, Autumn 2024L16: Caches I

Can we have more than one cache?

 Why would we want to do that?
 Avoid going to memory!

 Typical performance numbers:
 Miss Rate

• L1 MR = 3-10%
• L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.

 Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

 Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!

30

CSE351, Autumn 2024L16: Caches I

An Example Memory Hierarchy

31

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Autumn 2024L16: Caches I

Summary

 Memory Hierarchy
 Successively higher levels contain “most used” data from

lower levels
 Makes use of temporal and spatial locality
 Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

 Cache Performance
 Ideal case: found in cache (hit)
 Bad case: not found in cache (miss), search in next level
 Average Memory Access Time (AMAT) = HT + MR × MP

• Hurt by Miss Rate and Miss Penalty
32

	Memory & Caches I�CSE 351 Autumn 2024
	Relevant Course Information
	Aside: Units and Prefixes (Review)
	How to Remember?
	Reading Review
	Review Questions
	How does execution time grow with SIZE?
	Actual Data
	Making memory accesses fast!
	Processor-Memory Gap
	Problem: Processor-Memory Bottleneck
	Problem: Processor-Memory Bottleneck
	Cache 💰
	General Cache Mechanics (Review)
	General Cache Concepts: Hit (Review)
	General Cache Concepts: Miss (Review)
	Why Caches Work (Review)
	Why Caches Work (Review)
	Why Caches Work (Review)
	Example: Any Locality?
	Locality Example #1 Code
	Locality Example #1
	Locality Example #2 Code
	Locality Example #2
	Locality Example #3 Code
	Locality Example #3
	Cache Performance Metrics (Review)
	Cache Performance (Review)
	Practice Question
	Can we have more than one cache?
	An Example Memory Hierarchy
	Summary

