
CSE351, Autumn 2024L16: Caches I

Memory & Caches I
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

http://xkcd.com/1353/

Alt text: I looked at some of the data dumps from vulnerable sites, and
it was ... bad. I saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhäuser Gate. I should probably patch OpenSSL.

http://xkcd.com/1513/

CSE351, Autumn 2024L16: Caches I

Relevant Course Information
 HW14 due TONIGHT, Wednesday (10/30) @ 11:59 pm
 No Lecture on Fri 11/01 (No HW/Reading due)
 HW15 not due until next Monday (11/04)
 HW16 de next Wed (11/06)

 Midterm Exam: See Ed Post and exams page
 Take home, on Gradescope
 Open: Thursday 10/31 at 5pm; Due: Saturday 11/02 at 11:59pm
 Review in section this week (10/31)

 Lab 3 due Mon 11/11
 Encouraged to aim for Fri 11/08, actual deadline Mon 11/11
 You have everything you need to do the lab as of last lecture!
 Last part of HW15 (due Mon 11/04) is useful for Lab 3

2

https://edstem.org/us/courses/61460/discussion/5588759
https://courses.cs.washington.edu/courses/cse351/24au/exams/#midterm

CSE351, Autumn 2024L16: Caches I

Aside: Units and Prefixes (Review)

 Here focusing on large numbers (exponents > 0)
 Note that 103 ≈ 210

 SI prefixes are ambiguous if base 10 or 2
 IEC prefixes are unambiguously base 2

3

CSE351, Autumn 2024L16: Caches I

How to Remember?

 Will be given to you on Final reference sheet

 Mnemonics
 There unfortunately isn’t one well-accepted mnemonic

• But that shouldn’t stop you from trying to come with one!

 Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel
 Kirby Missed Ganondorf Terribly, Potentially Exterminating

Zelda and Yoshi
 xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo

• https://xkcd.com/992/

 Post your best on Ed Discussion!

4

https://xkcd.com/992/

CSE351, Autumn 2024L16: Caches I

Reading Review

 Terminology:
 Caches: cache blocks, cache hit, cache miss
 Principle of locality: temporal and spatial
 Average memory access time (AMAT): hit time, miss penalty,

hit rate, miss rate

5

CSE351, Autumn 2024L16: Caches I

Review Questions

 Convert the following to or from IEC:
 512 Ki-books
 227 cats

 Compute the average memory access time (AMAT)
for the following system properties:
 Hit time of 1 ns
 Miss rate of 1%
 Miss penalty of 100 ns

6

CSE351, Autumn 2024L16: Caches I

How does execution time grow with SIZE?

7

int array[SIZE];
int sum = 0;

for (int i = 0; i < 200000; i++) {
for (int j = 0; j < SIZE; j++) {
sum += array[j];

}
}

SIZE

Ex
ec

ut
io

n
Ti

m
e

Plot:

CSE351, Autumn 2024L16: Caches I

Actual Data

8

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

Chart1

		1

		2

		8

		16

		32

		65

		128

		256

		512

		768

		1024

		1536

		2048

		3036

		4096

		8192

0.01

0.01

0.02

0.02

0.05

0.08

0.15

0.29

0.56

0.83

1.13

5.23

8.61

14.49

20.03

40.8

232_cache_data

		1		0.01

		2		0.01

		8		0.02

		16		0.02

		32		0.05

		65		0.08

		128		0.15

		256		0.29

		512		0.56

		768		0.83

		1024		1.13

		1536		5.23

		2048		8.61

		3036		14.49

		4096		20.03

		8192		40.8

232_cache_data

		

CSE351, Autumn 2024L16: Caches I

Making memory accesses fast!

 Cache basics
 Principle of locality
 Memory hierarchies
 Cache organization
 Program optimizations that consider caches

9

CSE351, Autumn 2024L16: Caches I

Processor-Memory Gap

10

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CSE351, Autumn 2024L16: Caches I

Problem: Processor-Memory Bottleneck

11

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory
cycle: single machine step (fixed-time)

CSE351, Autumn 2024L16: Caches I

Problem: Processor-Memory Bottleneck

12

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

CSE351, Autumn 2024L16: Caches I

Cache 💰💰

 Pronunciation: “cash”
 We abbreviate this as “$”

 English: A hidden storage space
for provisions, weapons, and/or treasures

 Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/I$) or data (d-cache/D$)
 More generally: Used to optimize data transfers between

any system elements with different characteristics (network
interface cache, I/O cache, etc.)

13

CSE351, Autumn 2024L16: Caches I

General Cache Mechanics (Review)

14

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory

• Caches a subset of the blocks

CSE351, Autumn 2024L16: Caches I

General Cache Concepts: Hit (Review)

15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU

CSE351, Autumn 2024L16: Caches I

General Cache Concepts: Miss (Review)

16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU

CSE351, Autumn 2024L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

17

CSE351, Autumn 2024L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

18

block

CSE351, Autumn 2024L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
 Items with nearby addresses tend

to be referenced close together in time

 How do caches take advantage of this?
19

block

block

CSE351, Autumn 2024L16: Caches I

Example: Any Locality?

 Data:
 Temporal: sum referenced in each iteration
 Spatial: consecutive elements of array a[] accessed

 Instructions:
 Temporal: cycle through loop repeatedly
 Spatial: reference instructions in sequence

20

sum = 0;
for (i = 0; i < n; i++)
{

sum += a[i];
}
return sum;

CSE351, Autumn 2024L16: Caches I

Locality Example #1 Code

21

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}

CSE351, Autumn 2024L16: Caches I

Locality Example #1

22

Access Pattern:
stride = ?

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]

10) a[2][1]
11) a[2][2]
12) a[2][3]

CSE351, Autumn 2024L16: Caches I

Locality Example #2 Code

23

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}

CSE351, Autumn 2024L16: Caches I

Locality Example #2

24

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}

76 92 108

Layout in Memory
a

[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

M = 3, N=4
a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]

10) a[0][3]
11) a[1][3]
12) a[2][3]

CSE351, Autumn 2024L16: Caches I

Locality Example #3 Code

 What is wrong
with this code?

 How can it be
fixed?

25

int sum_array_3D(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] m = 0
m = 1

m = 2

CSE351, Autumn 2024L16: Caches I

Locality Example #3

26

⋅ ⋅ ⋅

int sum_array_3D(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

 What is wrong
with this code?

 How can it be
fixed?

Layout in Memory (M = ?, N = 3, L = 4)
a

[0]
[0]
[0]

a
[0]
[0]
[1]

a
[0]
[0]
[2]

a
[0]
[0]
[3]

a
[0]
[1]
[0]

a
[0]
[1]
[1]

a
[0]
[1]
[2]

a
[0]
[1]
[3]

a
[0]
[2]
[0]

a
[0]
[2]
[1]

a
[0]
[2]
[2]

a
[0]
[2]
[3]

a
[1]
[0]
[0]

a
[1]
[0]
[1]

a
[1]
[0]
[2]

a
[1]
[0]
[3]

a
[1]
[1]
[0]

a
[1]
[1]
[1]

a
[1]
[1]
[2]

a
[1]
[1]
[3]

a
[1]
[2]
[0]

a
[1]
[2]
[1]

a
[1]
[2]
[2]

a
[1]
[2]
[3]

76 92 108 124 140 156 172

CSE351, Autumn 2024L16: Caches I

Cache Performance Metrics (Review)

 Huge difference between a cache hit and a cache miss
 Could be 100x speed difference between accessing cache

and main memory (measured in clock cycles)

 Miss Rate (MR)
 Fraction of memory references not found in cache

(misses / accesses) = 1 - Hit Rate

 Hit Time (HT)
 Time to deliver a block in the cache to the processor

• Includes time to determine whether the block is in the cache

 Miss Penalty (MP)
 Additional time required because of a miss

27

CSE351, Autumn 2024L16: Caches I

Cache Performance (Review)

 Two things hurt the performance of a cache:
 Miss rate and miss penalty

 Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty
(abbreviated AMAT = HT + MR × MP)

 99% hit rate twice as good as 97% hit rate!
 Assume HT of 1 clock cycle and MP of 100 clock cycles
 97%: AMAT =
 99%: AMAT =

28

CSE351, Autumn 2024L16: Caches I

Practice Question

 Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

 Which improvement would be best?
A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

29

CSE351, Autumn 2024L16: Caches I

Can we have more than one cache?

 Why would we want to do that?
 Avoid going to memory!

 Typical performance numbers:
 Miss Rate

• L1 MR = 3-10%
• L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.

 Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

 Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!

30

CSE351, Autumn 2024L16: Caches I

An Example Memory Hierarchy

31

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Autumn 2024L16: Caches I

Summary

 Memory Hierarchy
 Successively higher levels contain “most used” data from

lower levels
 Makes use of temporal and spatial locality
 Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

 Cache Performance
 Ideal case: found in cache (hit)
 Bad case: not found in cache (miss), search in next level
 Average Memory Access Time (AMAT) = HT + MR × MP

• Hurt by Miss Rate and Miss Penalty
32

	Memory & Caches I�CSE 351 Autumn 2024
	Relevant Course Information
	Aside: Units and Prefixes (Review)
	How to Remember?
	Reading Review
	Review Questions
	How does execution time grow with SIZE?
	Actual Data
	Making memory accesses fast!
	Processor-Memory Gap
	Problem: Processor-Memory Bottleneck
	Problem: Processor-Memory Bottleneck
	Cache 💰
	General Cache Mechanics (Review)
	General Cache Concepts: Hit (Review)
	General Cache Concepts: Miss (Review)
	Why Caches Work (Review)
	Why Caches Work (Review)
	Why Caches Work (Review)
	Example: Any Locality?
	Locality Example #1 Code
	Locality Example #1
	Locality Example #2 Code
	Locality Example #2
	Locality Example #3 Code
	Locality Example #3
	Cache Performance Metrics (Review)
	Cache Performance (Review)
	Practice Question
	Can we have more than one cache?
	An Example Memory Hierarchy
	Summary

