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Alt text:  I looked at some of the data dumps from vulnerable sites, and 
it was ... bad. I saw emails, passwords, password hints. SSL keys and 
session cookies. Important servers brimming with visitor IPs. Attack 
ships on fire off the shoulder of Orion, c-beams glittering in the dark 
near the Tannhäuser Gate. I should probably patch OpenSSL.
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Relevant Course Information
 HW14 due TONIGHT, Wednesday (10/30) @ 11:59 pm
 No Lecture on Fri 11/01 (No HW/Reading due) 
 HW15 not due until next Monday (11/04)
 HW16 de next Wed (11/06)

 Midterm Exam: See Ed Post and exams page
 Take home, on Gradescope
 Open: Thursday 10/31 at 5pm; Due: Saturday 11/02 at 11:59pm
 Review in section this week (10/31)

 Lab 3 due Mon 11/11
 Encouraged to aim for Fri 11/08, actual deadline Mon 11/11
 You have everything you need to do the lab as of last lecture!
 Last part of HW15 (due Mon 11/04) is useful for Lab 3
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https://edstem.org/us/courses/61460/discussion/5588759
https://courses.cs.washington.edu/courses/cse351/24au/exams/#midterm
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Aside:  Units and Prefixes (Review)

 Here focusing on large numbers (exponents > 0)
 Note that 103 ≈ 210

 SI prefixes are ambiguous if base 10 or 2
 IEC prefixes are unambiguously base 2
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How to Remember?

 Will be given to you on Final reference sheet

 Mnemonics
 There unfortunately isn’t one well-accepted mnemonic

• But that shouldn’t stop you from trying to come with one!

 Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel 
 Kirby Missed Ganondorf Terribly, Potentially Exterminating 

Zelda and Yoshi
 xkcd:  Karl Marx Gave The Proletariat Eleven Zeppelins, Yo

• https://xkcd.com/992/

 Post your best on Ed Discussion!
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https://xkcd.com/992/
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Reading Review

 Terminology:
 Caches: cache blocks, cache hit, cache miss
 Principle of locality:  temporal and spatial
 Average memory access time (AMAT): hit time, miss penalty, 

hit rate, miss rate
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Review Questions

 Convert the following to or from IEC:
 512 Ki-books
 227 cats

 Compute the average memory access time (AMAT) 
for the following system properties: 
 Hit time of 1 ns
 Miss rate of 1%
 Miss penalty of 100 ns
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How does execution time grow with SIZE?
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int array[SIZE];  
int sum = 0;  

for (int i = 0; i < 200000; i++) {
for (int j = 0; j < SIZE; j++) {
sum += array[j];

}
}
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Actual Data
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Making memory accesses fast!

 Cache basics
 Principle of locality
 Memory hierarchies
 Cache organization
 Program optimizations that consider caches
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Processor-Memory Gap
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Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)
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Problem:  Processor-Memory Bottleneck
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Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory
cycle: single machine step (fixed-time)
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Problem:  Processor-Memory Bottleneck
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Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)
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Cache 💰💰

 Pronunciation:  “cash”
 We abbreviate this as “$”

 English:  A hidden storage space 
for provisions, weapons, and/or treasures

 Computer:  Memory with short access time used for 
the storage of frequently or recently used instructions 
(i-cache/I$) or data (d-cache/D$)
 More generally:  Used to optimize data transfers between 

any system elements with different characteristics (network 
interface cache, I/O cache, etc.)
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General Cache Mechanics (Review)
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

• Smaller, faster, more expensive 
memory

• Caches a subset of the blocks
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General Cache Concepts:  Hit (Review)
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU
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General Cache Concepts:  Miss (Review)

16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU
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Why Caches Work (Review)

 Locality: Programs tend to use data and instructions 
with addresses near or equal to those they have used 
recently
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Why Caches Work (Review)

 Locality: Programs tend to use data and instructions 
with addresses near or equal to those they have used 
recently

 Temporal locality:
 Recently referenced items are likely 

to be referenced again in the near future
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Why Caches Work (Review)

 Locality: Programs tend to use data and instructions 
with addresses near or equal to those they have used 
recently

 Temporal locality:  
 Recently referenced items are likely 

to be referenced again in the near future

 Spatial locality:  
 Items with nearby addresses tend 

to be referenced close together in time

 How do caches take advantage of this?
19
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Example:  Any Locality?

 Data:
 Temporal: sum referenced in each iteration
 Spatial: consecutive elements of array a[] accessed

 Instructions:
 Temporal: cycle through loop repeatedly
 Spatial: reference instructions in sequence
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sum = 0;
for (i = 0; i < n; i++) 
{

sum += a[i];
}
return sum;
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Locality Example #1 Code

21

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}
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Locality Example #1
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Access Pattern:
stride = ?

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0] 
[0]

a
[0] 
[1]

a
[0] 
[2]

a
[0] 
[3]

a
[1] 
[0]

a
[1] 
[1]

a
[1] 
[2]

a
[1] 
[3]

a
[2] 
[0]

a
[2] 
[1]

a
[2] 
[2]

a
[2] 
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]

10) a[2][1]
11) a[2][2]
12) a[2][3]
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Locality Example #2 Code
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int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}



CSE351, Autumn 2024L16:  Caches I

Locality Example #2

24

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}

76 92 108

Layout in Memory
a

[0] 
[0]

a
[0] 
[1]

a
[0] 
[2]

a
[0] 
[3]

a
[1] 
[0]

a
[1] 
[1]

a
[1] 
[2]

a
[1] 
[3]

a
[2] 
[0]

a
[2] 
[1]

a
[2] 
[2]

a
[2] 
[3]

M = 3, N=4
a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]

10) a[0][3]
11) a[1][3]
12) a[2][3]
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Locality Example #3 Code

 What is wrong 
with this code?

 How can it be 
fixed?
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int sum_array_3D(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] m = 0
m = 1

m =  2
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Locality Example #3

26

⋅ ⋅ ⋅

int sum_array_3D(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

 What is wrong 
with this code?

 How can it be 
fixed?

Layout in Memory (M = ?, N = 3, L = 4)
a

[0]
[0] 
[0]

a
[0]
[0] 
[1]

a
[0]
[0] 
[2]

a
[0]
[0] 
[3]

a
[0]
[1] 
[0]

a
[0]
[1] 
[1]

a
[0]
[1] 
[2]

a
[0]
[1] 
[3]

a
[0]
[2] 
[0]

a
[0]
[2] 
[1]

a
[0]
[2] 
[2]

a
[0]
[2] 
[3]

a
[1]
[0] 
[0]

a
[1]
[0] 
[1]

a
[1]
[0] 
[2]

a
[1]
[0] 
[3]

a
[1]
[1] 
[0]

a
[1]
[1] 
[1]

a
[1]
[1] 
[2]

a
[1]
[1] 
[3]

a
[1]
[2] 
[0]

a
[1]
[2] 
[1]

a
[1]
[2] 
[2]

a
[1]
[2] 
[3]

76 92 108 124 140 156 172
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Cache Performance Metrics (Review)

 Huge difference between a cache hit and a cache miss
 Could be 100x speed difference between accessing cache 

and main memory (measured in clock cycles)

 Miss Rate (MR)
 Fraction of memory references not found in cache 

(misses / accesses) = 1 - Hit Rate

 Hit Time (HT)
 Time to deliver a block in the cache to the processor

• Includes time to determine whether the block is in the cache

 Miss Penalty (MP)
 Additional time required because of a miss
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Cache Performance (Review)

 Two things hurt the performance of a cache:
 Miss rate and miss penalty

 Average Memory Access Time (AMAT):  average time 
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty
(abbreviated AMAT = HT + MR × MP)

 99% hit rate twice as good as 97% hit rate!
 Assume HT of 1 clock cycle and MP of 100 clock cycles
 97%:  AMAT =
 99%:  AMAT =
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Practice Question

 Processor specs: 200 ps clock, MP of 50 clock cycles, 
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT = 

 Which improvement would be best?
A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction
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Can we have more than one cache?

 Why would we want to do that?
 Avoid going to memory!

 Typical performance numbers:
 Miss Rate

• L1 MR = 3-10%
• L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.

 Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

 Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!
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An Example Memory Hierarchy

31

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years
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Summary

 Memory Hierarchy
 Successively higher levels contain “most used” data from 

lower levels
 Makes use of temporal and spatial locality
 Caches are intermediate storage levels used to optimize 

data transfers between any system elements with different 
characteristics 

 Cache Performance
 Ideal case:  found in cache (hit)
 Bad case:  not found in cache (miss), search in next level
 Average Memory Access Time (AMAT) = HT + MR × MP

• Hurt by Miss Rate and Miss Penalty
32
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