
CSE351, Autumn 2024L14: Structs & Alignment

Structs & Alignment
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

http://xkcd.com/163/

http://xkcd.com/163/

CSE351, Autumn 2024L14: Structs & Alignment

Relevant Course Information

 Lab 2 (x86-64) due TONIGHT, Friday (10/25)
 Since you are submitting a text file (defuser.txt), there

won’t be any Gradescope autograder output this time

 HW12 due TONIGHT, Friday (10/25) @ 11:59 pm
 HW13 due Monday (10/28) @ 11:59 pm
 HW14 due Wednesday (10/30) @ 11:59 pm
 No Lecture on Fri 11/01 (No HW/Reading due)
 Midterm Exam: https://cs.uw.edu/cse351/exams/
 Take home, on Gradescope
 Open: Thursday 10/31 at 5pm; Due: Saturday 11/02 at 11:59pm
 Review in section next week (10/31)

2

https://cs.uw.edu/cse351/exams/

CSE351, Autumn 2024L14: Structs & Alignment

Reading Review

 Terminology:
 Structs: tags and fields, . and -> operators
 Typedef
 Alignment, internal fragmentation, external fragmentation

3

CSE351, Autumn 2024L14: Structs & Alignment

Review Questions

 How much space does (in bytes) does an instance of
struct ll_node take?

 Which of the following statements are syntactically
valid?
 n1.next = &n2;
 n2->data = 351;
 n1.next->data = 333;
 (&n2)->next->next.data = 451;

4

struct ll_node {
long data;
struct ll_node* next;

} n1, n2;

CSE351, Autumn 2024L14: Structs & Alignment

Data Structures in C

 Arrays
 One-dimensional
 Multi-dimensional (nested)
 Multi-level

 Structs
 Alignment

5

CSE351, Autumn 2024L14: Structs & Alignment

Structs in C (Review)
 User-defined structured group of variables, possibly including

other structs
 Similar to Java object, but no methods nor inheritance; just fields
 Way of defining compound data types

6

struct song {
char *title;
int lengthInSeconds;
int yearReleased;

};

struct song song1;
song1.title = "Señorita";
song1.lengthInSeconds = 191;
song1.yearReleased = 2019;

struct song song2;
song2.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
song2.yearReleased = 2011;

struct song {
char *title;
int lengthInSeconds;
int yearReleased;

};

song1
title: "Señorita"
lengthInSeconds: 191
yearReleased: 2019

song2
title: "Call Me Maybe"
lengthInSeconds: 193
yearReleased: 2011

CSE351, Autumn 2024L14: Structs & Alignment

Struct Definitions (Review)

 Structure definition:
 Does NOT declare a variable
 Tells compiler we’re defining it and

will be using instances of it
 Variable type is “struct name”

 Variable declarations like any other data type:

 Can also combine struct and instance definitions:

struct name name1;
struct name *pn;
struct name name_ar[3];

pointer
array

instance

struct name {
/* fields */

} st, *p = &st;

struct name {
/* fields */

};

Easy to forget
semicolon!

7

Used in review question—this
syntax can be difficult to read and
do not recommend!

CSE351, Autumn 2024L14: Structs & Alignment

Typedef in C (Review)
 A way to create an alias for another data type:
typedef <data type> <alias>;

 After typedef, the alias can be used interchangeably with the
original data type
typedef unsigned long int uli;
unsigned long int x = 12131989;
uli y = 12131989; // can now use it like this!

 Joint struct definition and typedef
 Don’t need to give struct a name in this case

8

typedef struct {
/* fields */

} name;
name n1;

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

CSE351, Autumn 2024L14: Structs & Alignment

Scope of Struct Definition (Review)

 Why is the placement of struct definition important?
 Declaring a variable creates space for it somewhere
 Without definition, program doesn’t know how much space

 Almost always define structs in global scope near the
top of your C file
 Struct definitions follow normal rules of scope
 Top of singular C files, or if using a header file, place there!

9

struct data {
int ar[4];
long d;

};

Size = 24 bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size = 32 bytes

CSE351, Autumn 2024L14: Structs & Alignment

Accessing Structure Members (Review)

 Given a struct instance, access
member using the . operator:

struct rec r1;
r1.i = val;

 Given a pointer to a struct:
struct rec *r;
r = &r1; // or malloc space for r to point to

We have two options:
• Use * and . operators: (*r).i = val;

• Use -> operator (shorter): r->i = val;

 In assembly: register holds address of the first byte
 Access members with offsets

10

struct rec {
int a[4];
long i;
struct rec *next;

};

CSE351, Autumn 2024L14: Structs & Alignment

Java side-note

 An instance of a class is like a pointer to a struct
containing the fields
 (Ignoring methods and subclassing for now)
 So Java’s x.f is like C’s x->f or (*x).f

 In Java, almost everything is a pointer (“reference”) to
an object
 Cannot declare variables or fields that are structs or arrays
 Always a pointer to a struct or array
 So every Java variable or field is ≤ 8 bytes (but can point to

lots of data)

11

class Record { ... }
Record x = new Record();

CSE351, Autumn 2024L14: Structs & Alignment

Structure Representation (Review)

 Characteristics
 Contiguously-allocated region of memory
 Refer to members within structure by names
 Fields may be of different types

12

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} st, *r = &st;

CSE351, Autumn 2024L14: Structs & Alignment

Structure Representation (Review)

 Structure represented as block of memory
 Big enough to hold all of the fields

 Fields ordered according to declaration order
 Even if another ordering would be more compact

 Compiler determines overall size + positions of fields
 Machine-level program has no understanding of the

structures in the source code

13

struct rec {
int a[4];
long i;
struct rec *next;

} st, *r = &st;
a

r

i next

0 16 24 32

CSE351, Autumn 2024L14: Structs & Alignment

r in %rdi
movq 16(%rdi), %rax
ret

long get_i(struct rec* r) {
return r->i;

}

Accessing a Structure Member

 Compiler knows the offset of each member
 No pointer arithmetic; compute as *(r+offset)

14

r->i

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec* next;

} st, *r = &st;

long get_a3(struct rec* r) {
return r->a[3];

}

r in %rdi
movl 12(%rdi), %rax
ret

CSE351, Autumn 2024L14: Structs & Alignment

r in %rdi

leaq 16(%rdi), %rax

ret

Pointer to Structure Member

15

r in %rdi

leaq 24(%rdi), %rax

ret

long* addr_of_i(struct rec* r)
{
return &(r->i);

}

struct rec** addr_of_next(struct rec* r)
{

return &(r->next);
}

struct rec {
int a[4];
long i;
struct rec* next;

} st, *r = &st;
a

r

i next

0 16 24 32

CSE351, Autumn 2024L14: Structs & Alignment

r in %rdi, index in %rsi
leaq (%rdi,%rsi,4), %rax
ret

int* find_addr_of_array_elem
(struct rec *r, long index)

{
return &r->a[index];

}

Generating Pointer to Array Element

 Generating Pointer to
Array Element
 Offset of each structure

member determined at
compile time
 Compute as:
r+4*index

16

r+4*index

&(r->a[index])

struct rec {
int a[4];
long i;
struct rec *next;

} st, *r = &st;
a

r

i next

0 16 24 32

CSE351, Autumn 2024L14: Structs & Alignment

Struct Pointers

 Pointers store addresses, which all “look” the same
 Lab 0 Example: struct instance Scores could be treated as

array of ints of size 4 via pointer casting
 A struct pointer doesn’t have to point to a declared instance

of that struct type

 Different struct fields may or may not be meaningful,
depending on what the pointer points to
 This will be important for Lab 5!

17

long get_a3(struct rec* r) {
return r->a[3];

}

movl 12(%rdi), %rax
ret

r r+12

"r->a[3]"
Memory:

CSE351, Autumn 2024L14: Structs & Alignment

Alignment Principles

 Aligned Data
 Primitive data type requires 𝐾𝐾 bytes
 Address must be multiple of 𝐾𝐾
 Required on some machines; advised on x86-64

 Motivation for Aligning Data
 Memory accessed by (aligned) chunks of bytes

(width is system dependent)
• Important for caching and paging, virtual memory
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)

 Though x86-64 hardware will work regardless of alignment of
data

18

CSE351, Autumn 2024L14: Structs & Alignment

Memory Alignment in x86-64

 Aligned means that any primitive object of 𝐾𝐾 bytes
must have an address that is a multiple of 𝐾𝐾

 Aligned addresses for data types:

19

𝐾𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

CSE351, Autumn 2024L14: Structs & Alignment

Structures & Alignment (Review)

 Unaligned Data: just pack all together!

 Aligned Data: unused space, but benefits later on.

 Primitive data type requires 𝐾𝐾 bytes
 Address must be multiple of 𝐾𝐾

20

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
char c;
int i[2];
double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CSE351, Autumn 2024L14: Structs & Alignment

Satisfying Alignment with Structures (1)

 Within structure:
 Must satisfy each element’s alignment requirement

 Overall structure placement
 Each structure has alignment requirement 𝐾𝐾max

• 𝐾𝐾max = Largest alignment of any element
• Counts array elements individually as elements

 Example:
 𝐾𝐾max = 8, due to double element

21

struct S1 {
char c;
int i[2];
double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation

CSE351, Autumn 2024L14: Structs & Alignment

Satisfying Alignment with Structures (2)

 Can find offset of individual fields
using offsetof()
 Need to #include <stddef.h>
 Example: offsetof(struct S2,c) returns 16

 For largest alignment requirement 𝐾𝐾max,
overall structure size must be multiple of 𝐾𝐾max
 Compiler will add padding at end of

structure to meet overall structure
alignment requirement

22

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
double v;
int i[2];
char c;

} st, *p = &st;

Multiple of 8Multiple of 8

CSE351, Autumn 2024L14: Structs & Alignment

Arrays of Structures

 Overall structure length multiple of 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

 Satisfy alignment requirement
for every element in array

23

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

CSE351, Autumn 2024L14: Structs & Alignment

Alignment of Structs (Review)

 Compiler will do the following:
 Maintains declared ordering of fields in struct
 Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

 Overall struct must be aligned according to largest field
 Total struct size must be multiple of its alignment

(may insert padding)
• sizeof should be used to get true size of structs

24

CSE351, Autumn 2024L14: Structs & Alignment

How the Programmer Can Save Space

 Compiler must respect order elements are declared in
 Sometimes the programmer can save space by declaring

large data types first

25

struct S4 {
char c;
int i;
char d;

} st;

struct S5 {
int i;
char c;
char d;

} st;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CSE351, Autumn 2024L14: Structs & Alignment

Practice Question

 Minimize the size of the struct by re-ordering the vars

 What are the old and new sizes of the struct?
sizeof(struct old) = 32 B sizeof(struct new) = _____

A. 22 bytes
B. 24 bytes
C. 28 bytes
D. 32 bytes

26

struct old {
int i;

short s[3];

char* c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};

CSE351, Autumn 2024L14: Structs & Alignment

Summary

 Arrays in C
 Aligned to satisfy every element’s alignment requirement

 Structures
 Allocate bytes for fields in order declared by programmer
 Pad in middle to satisfy individual element alignment

requirements
 Pad at end to satisfy overall struct alignment requirement

27

	Structs & Alignment�CSE 351 Autumn 2024
	Relevant Course Information
	Reading Review
	Review Questions
	Data Structures in C
	Structs in C (Review)
	Struct Definitions (Review)
	Typedef in C (Review)
	Scope of Struct Definition (Review)
	Accessing Structure Members (Review)
	Java side-note
	Structure Representation (Review)
	Structure Representation (Review)
	Accessing a Structure Member
	Pointer to Structure Member
	Generating Pointer to Array Element
	Struct Pointers
	Alignment Principles
	Memory Alignment in x86-64
	Structures & Alignment (Review)
	Satisfying Alignment with Structures (1)
	Satisfying Alignment with Structures (2)
	Arrays of Structures
	Alignment of Structs (Review)
	How the Programmer Can Save Space
	Practice Question
	Summary

