L14: Structs & Alignment CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON

Structs & Alignment

CSE 351 Autumn 2024

Instructor:
Ruth Anderson

Teaching Assistants:
Alexandra Michael
Connie Chen

Chloe Fong
Chendur Jayavelu

Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, SOME FRom ZERD.

DIFFERENT TASkS CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGORITHMS
EXPERT DONALD KNUTH,

“\WHO ARE You? HOW pID_
YOU GET IN MY HOUSE?
/

WAIT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

} .

http://xkcd.com/163/

http://xkcd.com/163/

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Relevant Course Information

+» Lab 2 (x86-64) due TONIGHT, Friday (10/25)

= Since you are submitting a text file (defuser. txt), there
won’t be any Gradescope autograder output this time

+» HW12 due TONIGHT, Friday (10/25) @ 11:59 pm
» HW13 due Monday (10/28) @ 11:59 pm

2+ HW14 due Wednesday (10/30) @ 11:59 pm

+» No Lecture on Fri 11/01 (No HW/Reading due)

+» Midterm Exam: https://cs.uw.edu/cse351/exams/
" Take home, on Gradescope

= Open: Thursday 10/31 at 5pm; Due: Saturday 11/02 at 11:59pm
= Review in section next week (10/31)

https://cs.uw.edu/cse351/exams/

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Reading Review

+» Terminology:
= Structs: tags and fields, . and -> operators
" Typedef
= Alignment, internal fragmentation, external fragmentation

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Review Questions

struct Ll _node {

long data;

struct Ll_node* next;
+ nl, n2;

+» How much space does (in bytes) does an instance of
struct Ll_node take?

+» Which of the following statements are syntactically
valid?
" nl.next = &n2;
" n2->data = 351;
" nl.next->data = 333;
= (&N2)->next->next.data = 451;

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Data Structures in C

< Arrays
" One-dimensional
® Multi-dimensional (nested)
" Multi-level
« Structs
= Alignment

YA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

CSE351, Autumn 2024

Structs in C (Review)

+ User-defined structured group of variables, possibly including

other structs

= Similar to Java object, but no methods nor inheritance; just fields

= Way of defining compound data types

struct song {
char *title;
int lengthInSeconds;
int yearReleased;

¥

struct song songl;

songl.title = "Sefilorita";
songl.lengthInSeconds = 191;
songl.yearReleased = 2019;
struct song songZ;

songZ.title = "Call Me Maybe";
song2.lengthInSeconds = 193;
songZ.yearReleased = 2011;

p
struct song {
char *title;
int lengthInSeconds;
int yearReleased;

b

\ S
songl
| title: "Sefiorita"
lengthInSeconds: 191
yearReleased: 2019
\ V.
song?2
title: "Call Me Maybe"
. lengthInSeconds: 193
yearReleased: 2011
\ V.

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Struct Definitions (Review)

+ Structure definition:
struct name {
= Does NOT declare a variable /% fields */
= Tells compiler we’re defining it and } ;€
will be using instances of it Fasy to forget
= Variable typeis “struct name” semicolon!
+ Variable declarations like any other data type:
struct name namel; < instance
struct name *pn; < pointer
struct name name ar([3] i $— array

« Can also combine struct and instance definitions:

struct name Used in review question—this
/* fields */ syntax can be difficult to read and

} st, *p = &st; do not recommend!

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Typedef in C (Review)

+» A way to create an alias for another data type:
typedef <data type> <alias>;

= After typedef, the alias can be used interchangeably with the
original data type

typedef unsigned long int uli;
unsigned long int x = 12131989;
uli y = 12131989; // can now use it like this!

% Joint struct definition and typedef
" Don’t need to give struct a name in this case

struct nm { typedef struct {
/* fields */ /* fields */

} i ' } name;

typedef struct nm name; name nl;

name nl;

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Scope of Struct Definition (Review)

+» Why is the placement of struct definition important?
" Declaring a variable creates space for it somewhere
= Without definition, program doesn’t know how much space

struct data { |<— Size =24 bytes struct rec {
int ar[4]; int a[4];
long d; long 1i;
}; struct rec* next;
Size =32 bytes—— | };

+» Almost always define structs in global scope near the
top of your C file
= Struct definitions follow normal rules of scope
" Top of singular Cfiles, or if using a header file, place there!

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Accessing Structure Members (Review)

+ @Given a struct instance, access
member using the . operator: |struct rec {

int a[4];
struct rec rl; long 1i;
rl.1 = val; struct rec *next;
+ Given a pointer to a struct: i
struct rec *r;
r = &rl; // or malloc space for r to point to
We have two options:
- Use * and . operators: (*r).1 = val;
- Use —-> operator (shorter): r->i = val;

« In assembly: register holds address of the first byte
= Access members with offsets

10

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

class Record { ... }

Java Side'nOte Record x = new Record() ;

+ An instance of a class is like a pointer to a struct
containing the fields
= (Ignoring methods and subclassing for now)
" SoJava’s x.f islikeC's x->f or (*x).f

+ In Java, almost everything is a pointer (“reference”) to
an object
® Cannot declare variables or fields that are structs or arrays
= Always a pointer to a struct or array

= So every Java variable or field is < 8 bytes (but can point to
lots of data)

11

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Structure Representation (Review)

struct rec { T
int a[4];
long 1i;
struct rec *next; a i next
%* — c
} st, r &st; 0 16 24 32

+ Characteristics
" Contiguously-allocated region of memory
= Refer to members within structure by names
" Fields may be of different types

12

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Structure Representation (Review)

struct rec { T
int a[4];
long 1i;
struct rec *next; a i next
%* — c
} st, r &st; 0 16 24 32

+ Structure represented as block of memory
" Big enough to hold all of the fields

+ Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

13

YA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Accessing a Structure Member

struct rec {

int af[4];

long 1i;

struct rec* next;
} st, *r = &st;

CSE351, Autumn 2024

T r—->1
a i next
0 16 24

«» Compiler knows the offset of each member
= No pointer arithmetic; compute as * (r+offset)

32

long get 1i(struct rec* r)
return r->1;

}

{

r in %rdi
movqg 16(%rdi), Srax
ret

long get a3 (struct rec* r)
return r->a([3];

}

{

r in %$rdi
movl 12 (%rdi), %rax
ret

14

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Pointer to Structure Member

struct rec { T
int af4];
long 1i; M
struct rec* next; a 1 next
* = ®
} st, r &st; 0 16 24 32
long* addr of i (struct rec* r) # r in %rdi

{

return & (r->1i);
} ret

leag 16(%rdi), 5rax

struct rec** addr of next (struct rec* r) # r in %rdi

{

return & (r->next) ;
} ret

leag 24 (%rdi), 5rax

15

YA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Generating Pointer to Array Element

struct rec {
int af[4];
long 1i;
struct rec *next;

} st, *r = &st;

+» Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

T r+4*index
a i next
0 16 24 32

CSE351, Autumn 2024

int* find addr of array elem
(struct rec *r, long index)

{

return &r—>al[index];

: N\

b
& (r->a[index])

r 1n %rdi, index in %rsi
leag (%5rdi,%rsi,4), %rax

ret

16

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Struct Pointers

+ Pointers store addresses, which all “look” the same

= Lab 0 Example: struct instance Scores could be treated as
array of ints of size 4 via pointer casting

= A struct pointer doesn’t have to point to a declared instance
of that struct type

+ Different struct fields may or may not be meaningful,
depending on what the pointer points to

= This will be important for Lab 5!

long get a3 (struct rec* r) ({ movl 12 (%rdi), S%rax
return r->al[3]; ret

} r r+12

Memory: " ﬁ““1 B

nr_>a[3]u 17

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
"= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Important for caching and paging, virtual memory
- Inefficient to load or store value that spans quad word boundaries
- Virtual memory trickier when value spans 2 pages (more on this later)

" Though x86-64 hardware will work regardless of alignment of
data

18

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Memory Alignment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+ Aligned addresses for data types:

1 char No restrictions
2 short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

19

YA UNIVERSITY of WASHINGTON

Structures & Alighment (Review)

L14: Structs & Alignment

+» Unaligned Data: just pack all together!

C

1[0]

1[1]

\Y4

p ptl

< Aligned Data: unused space, but benefits later on.

p+5 p+9

p+17

" Primitive data type requires K bytes
= Address must be multiple of K

CSE351, Autumn 2024

struct S1 {
char c;
int 1[2];
double v;

} st, *p = &st;

C i[0] i[1] v
p+0 D4 p+8 p+16
Muhphoh{ Multiple of 8
Multiple of 8 internal fragmentation

pt24

Multiple of 8
20

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Autumn 2024

Satisfying Alignment with Structures (1)

= Within structure: struct S1 {
_ o _ char c;

" Must satisfy each element’s alignment requirement s 479 ¢

+ Qverall structure placement double v;

} st, *p = &st;

= Each structure has alignment requirement K.«

« K ax = Largest alignment of any element
« Counts array elements individually as elements

+» Example:

Kax =8, due to double element

C 1[0] i[1] v
p+0 O 4 p+8 p+16 p+24

a

Multiple ofﬁ Multiple of 8

Multiple of 8 internal fragmentation)

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Satisfying Alignment with Structures (2)

CSE351, Autumn 2024

« Can find offset of individual fields Stzuc;lﬂ {
. ou e Vv,
using offsetof () oot L1 ¢
" Needto #include <stddef.h> char c;
" Example: offsetof (struct S2, c) returns 16 b st, *p = é&st;

+ For largest alignment requirement K,,«,
overall structure size must be multiple of K4«

= Compiler will add padding at end of
structure to meet overall structure
alignment requirement

v 1[0] 1[1] C
p+0 p+8 pt+16 pt+24

a2

Multiple of 8 external fragmentation Multiple of 8

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Arrays of Structures

CSE351, Autumn 2024

o ver : struct S2
Overall structure length multiple of K, 4, double v
+ Satisfy alighment requirement iﬁt L2l

. cnhar ¢C;

for every element in array } a[10];

a[0] all] al2] I

a+0 a+24 a+48 at’2
\Y 1[0] 1[1] C

a+48

a+24 a+32 a+40 /

external fragmentation

23

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Alignment of Structs (Review)

+» Compiler will do the following:

" Maintains declared ordering of fields in struct

" Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

= QOverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment
(may insert padding)
- sizeof should be used to get true size of structs

24

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i;
int i; ‘ char c;
char d; char d;
} st; } sty
C 1 d 1 cld

Y Y
12 bytes 8 bytes

25

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Autumn 2024

Practice Question

Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int i; int i;

short s[3];

float f; ;
I 2 I 2

« What are the old and new sizes of the struct?

sizeof (struct old) =328B sizeof (struct new) =

28 bytes

A.
B. 24 bytes
C
D. 32 bytes

26

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Autumn 2024

Summary

+» Arraysin C
= Aligned to satisfy every element’s alignment requirement

< Structures

= Allocate bytes for fields in order declared by programmer

" Pad in middle to satisfy individual element alignment
requirements

" Pad at end to satisfy overall struct alignment requirement

27

	Structs & Alignment�CSE 351 Autumn 2024
	Relevant Course Information
	Reading Review
	Review Questions
	Data Structures in C
	Structs in C (Review)
	Struct Definitions (Review)
	Typedef in C (Review)
	Scope of Struct Definition (Review)
	Accessing Structure Members (Review)
	Java side-note
	Structure Representation (Review)
	Structure Representation (Review)
	Accessing a Structure Member
	Pointer to Structure Member
	Generating Pointer to Array Element
	Struct Pointers
	Alignment Principles
	Memory Alignment in x86-64
	Structures & Alignment (Review)
	Satisfying Alignment with Structures (1)
	Satisfying Alignment with Structures (2)
	Arrays of Structures
	Alignment of Structs (Review)
	How the Programmer Can Save Space
	Practice Question
	Summary

