
CSE351, Autumn 2024L06: Floating Point

Floating Point
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

http://www.smbc-comics.com/?id=2999

http://www.smbc-comics.com/?id=2999

CSE351, Autumn 2024L06: Floating Point

Relevant Course Information

 HW4 due Monday (10/07) @ 11:59 pm
 Lab 1a due Tuesday (10/08) @ 11:59pm
 Submit pointer.c and lab1Asynthesis.txt
 Make sure you submit something to Gradescope before the

deadline and that the file names are correct
 Can use late day tokens to submit up until Thurs 11:59 pm

 HW5 due Wednesday (10/09) @ 11:59 pm
 Lab 1b, due Monday (10/14) @ 11:59pm
 Submit aisle_manager.c, store_client.c, and
lab1Bsynthesis.txt

2

CSE351, Autumn 2024L06: Floating Point

Lab 1b Aside: C Macros

 C macros basics:
 Basic syntax is of the form: #define NAME expression
 Allows you to use “NAME” instead of “expression” in code

• Does naïve copy and replace before compilation – everywhere the
characters “NAME” appear in the code, the characters “expression”
will now appear instead

• NOT the same as a Java constant

 Useful to help with readability/factoring in code

 You’ll use C macros in Lab 1b for defining bit masks
 See Lab 1b starter code and Lecture 4 slides (deck of cards

operations) for examples

3

CSE351, Autumn 2024L06: Floating Point

Reading Review

 Terminology:
 normalized scientific binary notation
 trailing zeros
 sign, mantissa, exponent ↔ bit fields S, M, and E
 float, double
 biased notation (exponent), implicit leading one (mantissa)
 Special values
 Overflow, underflow, rounding errors

4

CSE351, Autumn 2024L06: Floating Point

Review Questions

 Convert 11.37510 to normalized binary scientific
notation

 What is the correct value encoded by the following
floating point number?
0b 0 | 1000 0000 | 110 0000 0000 0000 0000 0000
 bias = 2w-1-1
 exponent = E – bias
 mantissa = 1.M

5

CSE351, Autumn 2024L06: Floating Point

Number Representation Revisited

 What can we represent in one word?
 Signed and Unsigned Integers
 Characters (ASCII)
 Addresses

 How do we encode the following:
 Real numbers (e.g., 3.14159)
 Very large numbers (e.g., 6.02×1023)
 Very small numbers (e.g., 6.626×10-34)
 Special numbers (e.g., ∞, NaN)

6

Floating
Point

CSE351, Autumn 2024L06: Floating Point

Floating Point Topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that we won’t cover
 It’s a 58-page standard…

7

CSE351, Autumn 2024L06: Floating Point

Representation of Fractions

 Binary Point, like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

8

xx.yyyy
21

20 2-1 2-2 2-3 2-4

CSE351, Autumn 2024L06: Floating Point

• • •
b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2
 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1
2i

• • •

1/2
1/4
1/8

2–j

bk ⋅2
k

k=− j

i
∑

9

CSE351, Autumn 2024L06: Floating Point

Fractional Binary Numbers

 Value Representation
 5 and 3/4
 2 and 7/8
 47/64

 Observations
 Shift left = multiply by power of 2
 Shift right = divide by power of 2

101.112
10.1112
0.1011112

10

CSE351, Autumn 2024L06: Floating Point

Limits of Representation

 Limitations:
 Even given an arbitrary number of bits, can only exactly

represent numbers of the form x * 2y (y can be negative)
 Other rational numbers have repeating bit representations

Value: Binary Representation:
• 1/3 = 0.333333…10 = 0.01010101[01]…2

• 1/5 = 0.001100110011[0011]…2

• 1/10 = 0.0001100110011[0011]…2

11

CSE351, Autumn 2024L06: Floating Point

Fixed Point Representation

 Implied binary point. Two example schemes:
#1: the binary point is between bits 2 and 3

b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

 Which scheme is best?

12

CSE351, Autumn 2024L06: Floating Point

Binary Scientific Notation (Review)

 Normalized form: exactly one digit (non-zero) to left
of binary point

 Computer arithmetic that supports this called floating
point due to the “floating” of the binary point
 Declare such variable in C as float (or double)

13

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE351, Autumn 2024L06: Floating Point

IEEE Floating Point

 IEEE 754 (established in 1985)
 Standard to make numerically-sensitive programs portable
 Specifies two things: representation scheme and result of floating

point operations
 Supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible
 Engineers want them to be easy to implement and fast
 Scientists mostly won out:

• Nice standards for rounding, overflow, underflow, but...
• Hard to make fast in hardware
• Float operations can be an order of magnitude slower than integer ops

14

CSE351, Autumn 2024L06: Floating Point

Floating Point Encoding (Review)

 Use normalized, base 2 scientific notation:
 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:
 Sign bit (0 is positive, 1 is negative)
 Mantissa (a.k.a. significand) is the fractional part of the

number in normalized form and encoded in bit vector M
 Exponent weights the value by a (possibly negative) power

of 2 and encoded in the bit vector E

15

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Autumn 2024L06: Floating Point

The Exponent Field (Review)

 Use biased notation
 Read exponent as unsigned, but with bias of 2w-1-1 = 127
 Representable exponents roughly ½ positive and ½ negative
 Exp = E – bias ↔ E = Exp + bias

• Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?
 Makes floating point arithmetic easier
 Makes somewhat compatible with two’s complement

hardware 16

CSE351, Autumn 2024L06: Floating Point

The Mantissa (Fraction) Field (Review)

 Note the implicit 1 in front of the M bit vector
 Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000

is read as 1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”
 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1
17

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE351, Autumn 2024L06: Floating Point

Normalized Floating Point Conversions

 FP → Decimal
1. Append the bits of M to

implicit leading 1 to form
the mantissa.

2. Multiply the mantissa by
2E – bias.

3. Multiply the sign (-1)S.
4. Multiply out the

exponent by shifting the
binary point.

5. Convert from binary to
decimal.

18

 Decimal → FP
1. Convert decimal to

binary.
2. Convert binary to

normalized scientific
notation.

3. Encode sign as S (0/1).
4. Add the bias to exponent

and encode E as
unsigned.

5. The first bits after the
leading 1 that fit are
encoded into M.

CSE351, Autumn 2024L06: Floating Point

Practice Question

 Convert the decimal number
-11.375 = -1.011011 * 23

into floating point representation

19

CSE351, Autumn 2024L06: Floating Point

Precision and Accuracy

 Precision is a count of the number of bits in a
computer word used to represent a value
 Capacity for accuracy

 Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

 High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.
 Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

20

CSE351, Autumn 2024L06: Floating Point

Need Greater Precision?

 Double Precision (vs. Single Precision) in 64 bits

 C variable declared as double
 Exponent bias is now 210–1 = 1023
 Advantages: greater precision (larger mantissa),

greater range (larger exponent)
 Disadvantages: more bits used,

slower to manipulate
21

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE351, Autumn 2024L06: Floating Point

Special Cases

 But wait… what happened to zero?
 Special case: E and M all zeros = 0
 Two zeros! But at least 0x00000000 = 0 like integers

 E = 0xFF, M = 0: ± ∞
 e.g., division by 0
 Still work in comparisons!

 E = 0xFF, M ≠ 0: Not a Number (NaN)
 e.g., square root of negative number, 0/0, ∞–∞
 NaN propagates through computations
 Value of M can be useful in debugging

22

CSE351, Autumn 2024L06: Floating Point

Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

23

CSE351, Autumn 2024L06: Floating Point

New Representation Limits

 New largest value (besides ∞)?
 E = 0xFF has now been taken!
 E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

 New numbers closest to 0:
 E = 0x00 taken; next smallest is E = 0x01
 a = 1.0…002×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame
 Special case: E = 0, M ≠ 0 are denormalized numbers

24

0
+∞-∞

Gaps!

a

b

CSE351, Autumn 2024L06: Floating Point

Denorm Numbers

 Denormalized numbers
 No leading 1
 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero
and the smallest normalized number
 Smallest norm: ± 1.0…00two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

25

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Autumn 2024L06: Floating Point

Floating Point Interpretation Flow Chart

26

FP Bits What is the
value of E?

What is the
value of M?

−1 S × ∞

NaN

−1 S × 0. M × 21−bias

−1 S × 1. M × 2E−bias

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

CSE351, Autumn 2024L06: Floating Point

Distribution of Values

 What ranges are NOT representable?
 Between largest norm and infinity
 Between zero and smallest denorm
 Between norm numbers?

 Given a FP number, what’s the bit pattern of the next
largest representable number?
 What is this “step” when Exp = 0?
 What is this “step” when Exp = 100?

 Distribution of values is denser toward zero

27

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)
Underflow (Exp too small)
Rounding

Chart4

		0.005		0.25		15

		0.0625		0.3125		-15

		0.125		0.375

		0.1875		0.4375

		-0.005		0.5

		-0.0625		0.625

		-0.125		0.75

		-0.1875		0.875

				1

				1.25

				1.5

				1.75

				2

				2.5

				3

				3.5

				4

				5

				6

				7

				8

				10

				12

				14

				-0.25

				-0.3125

				-0.375

				-0.4375

				-0.5

				-0.625

				-0.75

				-0.875

				-1

				-1.25

				-1.5

				-1.75

				-2

				-2.5

				-3

				-3.5

				-4

				-5

				-6

				-7

				-8

				-10

				-12

				-14

Denormalized

Normalized

Infinity

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet1

		

		0.02		0.25		0.5		0.75		-0.02		-0.25		-0.5		-0.75

		0		0		0		0		0		0		0		0

		1		1.25		1.5		1.75		2		2.5		3		3.5		-1		-1.25		-1.5		-1.75		-2		-2.5		-3		-3.5

		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		5		-5

		0		0

Sheet1

		

Denormalized

Normalized

Infinity

Sheet2

		1/3/2 FP Format

		Fractions

		Denormalized		0		0.25		0.5		0.75

		Normalized		1		1.25		1.5		1.75

		Exponents

		0.25		0.005		0.0625		0.125		0.1875

		0.25		0.25		0.3125		0.375		0.4375

		0.5		0.5		0.625		0.75		0.875

		1		1		1.25		1.5		1.75

		2		2		2.5		3		3.5

		4		4		5		6		7

		8		8		10		12		14

		0.005		0.0625		0.125		0.1875		-0.005		-0.0625		-0.125		-0.1875

		0		0		0		0		0		0		0		0

		0.25		0.3125		0.375		0.4375		0.5		0.625		0.75		0.875		1		1.25		1.5		1.75		2		2.5		3		3.5		4		5		6		7		8		10		12		14		-0.25		-0.3125		-0.375		-0.4375		-0.5		-0.625		-0.75		-0.875		-1		-1.25		-1.5		-1.75		-2		-2.5		-3		-3.5		-4		-5		-6		-7		-8		-10		-12		-14

		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0		0

		15		-15

		0		0

Sheet2

		

Denormalized

Normalized

Infinity

Sheet3

		

Denormalized

Normalized

Infinity

		

CSE351, Autumn 2024L06: Floating Point

Floating Point Topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

28

CSE351, Autumn 2024L06: Floating Point

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea for floating point operations:
 First, compute the exact result
 Then round the result to make it fit into the specified

precision (width of M)
• Possibly over/underflow if exponent outside of range

29

S E M

Value = (-1)S×Mantissa×2Exponent

CSE351, Autumn 2024L06: Floating Point

Mathematical Properties of FP Operations

 Overflow yields ±∞ and underflow yields 0
 Floats with value ±∞ and NaN can be used in

operations
 Result usually still ±∞ or NaN, but not always intuitive

 Floating point operations do not work like real math,
due to rounding
 Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)

0 3.14

 Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.000000000000003553 30

 Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

30

CSE351, Autumn 2024L06: Floating Point

Floating Point in C

 Two common levels of precision:
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

#include <math.h> to get INFINITY and NAN constants
#include <float.h> for additional constants

 Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

31

!!!

CSE351, Autumn 2024L06: Floating Point

Floating Point Conversions in C

 Casting between int, float, and double changes
the bit representation
 int → float

• May be rounded (not enough bits in mantissa: 23)
• Overflow impossible

 int or float → double
• Exact conversion (all 32-bit ints representable)

 long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

 double or float → int
• Truncates fractional part (rounded toward zero)
• “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
32

!!!

CSE351, Autumn 2024L06: Floating Point

Number Representation Really Matters

 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970
 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years
 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 1997: USS Yorktown “smart” warship stranded: divide by zero
 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

33

CSE351, Autumn 2024L06: Floating Point

Floating Point Representation Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers
 Exponent in biased notation (bias = 2w-1–1)

• Size of exponent field determines our representable range
• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision
• Implicit leading 1 (normalized) except in special cases
• Exceeding length causes rounding

34

S E (8) M (23)
31 30 23 22 0

CSE351, Autumn 2024L06: Floating Point

Floating Point Summary

 Floats also suffer from the fixed number of bits
available to represent them
 Can get overflow/underflow
 “Gaps” produced in representable numbers means we can

lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or
distributive
 Mathematically equivalent ways of writing an expression

may compute different results
 Never test floating point values for equality! (==)
 Careful when converting between ints and floats!

35

CSE351, Autumn 2024L06: Floating Point

Summary

 Floating point encoding has many limitations
 Overflow, underflow, rounding
 Rounding is a HUGE issue due to limited mantissa bits and

gaps that are scaled by the value of the exponent
 Floating point arithmetic is NOT associative or distributive

 Converting between integral and floating point data
types does change the bits

36

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

	Floating Point�CSE 351 Autumn 2024
	Relevant Course Information
	Lab 1b Aside: C Macros
	Reading Review
	Review Questions
	Number Representation Revisited
	Floating Point Topics
	Representation of Fractions
	Fractional Binary Numbers
	Fractional Binary Numbers
	Limits of Representation
	Fixed Point Representation
	Binary Scientific Notation (Review)
	IEEE Floating Point
	Floating Point Encoding (Review)
	The Exponent Field (Review)
	The Mantissa (Fraction) Field (Review)
	Normalized Floating Point Conversions
	Practice Question
	Precision and Accuracy
	Need Greater Precision?
	Special Cases
	Floating Point Encoding Summary
	New Representation Limits
	Denorm Numbers
	Floating Point Interpretation Flow Chart
	Distribution of Values
	Floating Point Topics
	Floating Point Operations: Basic Idea
	Mathematical Properties of FP Operations
	Floating Point in C
	Floating Point Conversions in C
	Number Representation Really Matters
	Floating Point Representation Summary
	Floating Point Summary
	Summary

