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Relevant Course Information

 HW4 due Monday (10/07) @ 11:59 pm 
 Lab 1a due Tuesday (10/08) @ 11:59pm
 Submit pointer.c and lab1Asynthesis.txt
 Make sure you submit something to Gradescope before the 

deadline and that the file names are correct
 Can use late day tokens to submit up until Thurs 11:59 pm

 HW5 due Wednesday (10/09) @ 11:59 pm 
 Lab 1b, due Monday (10/14) @ 11:59pm
 Submit aisle_manager.c, store_client.c, and
lab1Bsynthesis.txt
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Lab 1b Aside: C Macros

 C macros basics:
 Basic syntax is of the form:  #define NAME expression
 Allows you to use “NAME” instead of “expression” in code

• Does naïve copy and replace before compilation – everywhere the 
characters “NAME” appear in the code, the characters “expression” 
will now appear instead

• NOT the same as a Java constant

 Useful to help with readability/factoring in code

 You’ll use C macros in Lab 1b for defining bit masks
 See Lab 1b starter code and Lecture 4 slides (deck of cards 

operations) for examples
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Reading Review

 Terminology:
 normalized scientific binary notation
 trailing zeros
 sign, mantissa, exponent ↔ bit fields S, M, and E
 float, double
 biased notation (exponent), implicit leading one (mantissa)
 Special values
 Overflow, underflow, rounding errors
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Review Questions

 Convert 11.37510 to normalized binary scientific 
notation

 What is the correct value encoded by the following 
floating point number?
0b  0 | 1000 0000 | 110 0000 0000 0000 0000 0000
 bias = 2w-1-1
 exponent = E – bias
 mantissa = 1.M
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Number Representation Revisited

 What can we represent in one word?
 Signed and Unsigned Integers
 Characters (ASCII)
 Addresses

 How do we encode the following:
 Real numbers (e.g., 3.14159)
 Very large numbers (e.g., 6.02×1023)
 Very small numbers (e.g., 6.626×10-34)
 Special numbers (e.g., ∞, NaN)
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Floating Point Topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C

 There are many more details that we won’t cover
 It’s a 58-page standard…
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Representation of Fractions

 Binary Point, like decimal point, signifies boundary 
between integer and fractional parts:

Example 6-bit
representation:

 Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

8
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• • •
b–1.

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2
 Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1
2i

• • •

1/2
1/4
1/8

2–j

bk ⋅2
k

k=− j

i
∑
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Fractional Binary Numbers

 Value Representation
 5 and 3/4
 2 and 7/8
 47/64

 Observations
 Shift left = multiply by power of 2
 Shift right = divide by power of 2

101.112
10.1112
0.1011112
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Limits of Representation

 Limitations:
 Even given an arbitrary number of bits, can only exactly

represent numbers of the form x * 2y (y can be negative)
 Other rational numbers have repeating bit representations

Value: Binary Representation:
• 1/3   = 0.333333…10 = 0.01010101[01]…2

• 1/5   = 0.001100110011[0011 ]…2

• 1/10 =   0.0001100110011[0011 ]…2
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Fixed Point Representation

 Implied binary point. Two example schemes:
#1: the binary point is between bits 2 and 3

b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

 Which scheme is best?
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Binary Scientific Notation (Review)

 Normalized form:  exactly one digit (non-zero) to left 
of binary point

 Computer arithmetic that supports this called floating 
point due to the “floating” of the binary point
 Declare such variable in C as float (or double)

13

1.012 × 2-1

radix (base)binary point

exponentmantissa
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IEEE Floating Point

 IEEE 754 (established in 1985)
 Standard to make numerically-sensitive programs portable
 Specifies two things: representation scheme and result of floating 

point operations
 Supported by all major CPUs

 Driven by numerical concerns
 Scientists/numerical analysts want them to be as real as possible
 Engineers want them to be easy to implement and fast
 Scientists mostly won out:

• Nice standards for rounding, overflow, underflow, but...
• Hard to make fast in hardware
• Float operations can be an order of magnitude slower than integer ops
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Floating Point Encoding (Review)

 Use normalized, base 2 scientific notation:
 Value: ±1 × Mantissa × 2Exponent

 Bit Fields: (-1)S × 1.M × 2(E–bias)

 Representation Scheme:
 Sign bit (0 is positive, 1 is negative)
 Mantissa (a.k.a. significand) is the fractional part of the 

number in normalized form and encoded in bit vector M
 Exponent weights the value by a (possibly negative) power 

of 2 and encoded in the bit vector E

15

S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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The Exponent Field (Review)

 Use biased notation
 Read exponent as unsigned, but with bias of 2w-1-1 = 127
 Representable exponents roughly ½ positive and ½ negative
 Exp = E – bias  ↔ E = Exp + bias

• Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

 Why biased?
 Makes floating point arithmetic easier
 Makes somewhat compatible with two’s complement 

hardware 16
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The Mantissa (Fraction) Field (Review)

 Note the implicit 1 in front of the M bit vector
 Example:  0b 0011 1111 1100 0000 0000 0000 0000 0000

is read as  1.12 = 1.510, not 0.12 = 0.510

 Gives us an extra bit of precision

 Mantissa “limits”
 Low values near M = 0b0…0 are close to 2Exp

 High values near M = 0b1…1 are close to 2Exp+1
17

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits



CSE351, Autumn 2024L06:  Floating Point

Normalized Floating Point Conversions

 FP → Decimal
1. Append the bits of M to 

implicit leading 1 to form 
the mantissa.

2. Multiply the mantissa by 
2E – bias.

3. Multiply the sign (-1)S.
4. Multiply out the 

exponent by shifting the 
binary point.

5. Convert from binary to 
decimal.

18

 Decimal → FP
1. Convert decimal to 

binary.
2. Convert binary to 

normalized scientific 
notation.

3. Encode sign as S (0/1).
4. Add the bias to exponent 

and encode E as 
unsigned.

5. The first bits after the 
leading 1 that fit are 
encoded into M.
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Practice Question

 Convert the decimal number
-11.375 = -1.011011 * 23

into floating point representation
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Precision and Accuracy

 Precision is a count of the number of bits in a 
computer word used to represent a value
 Capacity for accuracy

 Accuracy is a measure of the difference between the 
actual value of a number and its computer 
representation

 High precision permits high accuracy but doesn’t guarantee 
it.  It is possible to have high precision but low accuracy.
 Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa (highly 
precise), but is only an approximation (not accurate)

20
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Need Greater Precision?

 Double Precision (vs. Single Precision) in 64 bits

 C variable declared as double
 Exponent bias is now 210–1 = 1023
 Advantages: greater precision (larger mantissa), 

greater range (larger exponent)
 Disadvantages: more bits used,

slower to manipulate
21

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0
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Special Cases

 But wait… what happened to zero?
 Special case: E and M all zeros = 0
 Two zeros!  But at least 0x00000000 = 0 like integers

 E = 0xFF, M = 0:  ± ∞
 e.g., division by 0
 Still work in comparisons!

 E = 0xFF, M ≠ 0:  Not a Number (NaN)
 e.g., square root of negative number, 0/0, ∞–∞
 NaN propagates through computations
 Value of M can be useful in debugging

22
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Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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New Representation Limits

 New largest value (besides ∞)?
 E = 0xFF has now been taken!
 E = 0xFE has largest:  1.1…12×2127 = 2128 – 2104

 New numbers closest to 0:
 E = 0x00 taken; next smallest is E = 0x01
 a = 1.0…002×2-126 = 2-126

 b = 1.0…012×2-126 = 2-126 + 2-149

 Normalization and implicit 1 are to blame
 Special case: E = 0, M ≠ 0 are denormalized numbers

24

0
+∞-∞

Gaps!

a
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Denorm Numbers

 Denormalized numbers
 No leading 1
 Uses implicit exponent of –126 even though E = 0x00

 Denormalized numbers close the gap between zero 
and the smallest normalized number
 Smallest norm:     ± 1.0…00two×2-126 = ± 2-126

 Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

25

So much
closer to 0

This is extra 
(non-testable) 

material
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Floating Point Interpretation Flow Chart

26

FP Bits What is the 
value of E?

What is the 
value of M?

−1 S × ∞

NaN

−1 S × 0. M × 21−bias

−1 S × 1. M × 2E−bias

all 1’s

all 0’s

anything else

anything 
else

all 0’s

= special case
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Distribution of Values

 What ranges are NOT representable?
 Between largest norm and infinity
 Between zero and smallest denorm
 Between norm numbers?

 Given a FP number, what’s the bit pattern of the next 
largest representable number?
 What is this “step” when Exp = 0?
 What is this “step” when Exp = 100?

 Distribution of values is denser toward zero

27
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Floating Point Topics

 Fractional binary numbers
 IEEE floating-point standard
 Floating-point operations and rounding
 Floating-point in C
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Floating Point Operations:  Basic Idea

 x +f y = Round(x + y)

 x *f y = Round(x * y)

 Basic idea for floating point operations:
 First, compute the exact result
 Then round the result to make it fit into the specified 

precision (width of M)
• Possibly over/underflow if exponent outside of range

29

S E M

Value = (-1)S×Mantissa×2Exponent
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Mathematical Properties of FP Operations

 Overflow yields ±∞ and underflow yields 0
 Floats with value ±∞ and NaN can be used in 

operations
 Result usually still ±∞ or NaN, but not always intuitive

 Floating point operations do not work like real math, 
due to rounding
 Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)

0 3.14

 Not distributive: 100*(0.1+0.2) !=  100*0.1+100*0.2

30.000000000000003553 30

 Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

30
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Floating Point in C

 Two common levels of precision:
float 1.0f   single precision (32-bit)
double 1.0    double precision (64-bit)

#include <math.h> to get INFINITY and NAN constants
#include <float.h> for additional constants

 Equality (==) comparisons between floating point 
numbers are tricky, and often return unexpected 
results, so just avoid them!

31
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Floating Point Conversions in C

 Casting between int, float, and double changes
the bit representation
 int → float

• May be rounded (not enough bits in mantissa: 23)
• Overflow impossible

 int or float → double
• Exact conversion (all 32-bit ints representable)

 long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

 double or float → int
• Truncates fractional part (rounded toward zero)
• “Not defined” when out of range or NaN:  generally sets to Tmin

(even if the value is a very big positive)
32
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Number Representation Really Matters

 1991: Patriot missile targeting error
 clock skew due to conversion from integer to floating point

 1996: Ariane 5 rocket exploded  ($1 billion)
 overflow converting 64-bit floating point to 16-bit integer

 2000: Y2K problem
 limited (decimal) representation: overflow, wrap-around

 2038: Unix epoch rollover
 Unix epoch = seconds since 12am, January 1, 1970
 signed 32-bit integer representation rolls over to TMin in 2038

 Other related bugs:
 1982: Vancouver Stock Exchange 10% error in less than 2 years
 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 1997: USS Yorktown “smart” warship stranded: divide by zero
 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
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Floating Point Representation Summary

 Floating point approximates real numbers:

 Handles large numbers, small numbers, special numbers
 Exponent in biased notation (bias = 2w-1–1)

• Size of exponent field determines our representable range
• Outside of representable exponents is overflow and underflow

 Mantissa approximates fractional portion of binary point
• Size of mantissa field determines our representable precision
• Implicit leading 1 (normalized) except in special cases
• Exceeding length causes rounding

34

S E (8) M (23)
31 30 23 22 0
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Floating Point Summary

 Floats also suffer from the fixed number of bits 
available to represent them 
 Can get overflow/underflow
 “Gaps” produced in representable numbers means we can 

lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

 Floating point arithmetic not associative or 
distributive
 Mathematically equivalent ways of writing an expression 

may compute different results
 Never test floating point values for equality! (==)
 Careful when converting between ints and floats!

35
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Summary

 Floating point encoding has many limitations
 Overflow, underflow, rounding
 Rounding is a HUGE issue due to limited mantissa bits and 

gaps that are scaled by the value of the exponent
 Floating point arithmetic is NOT associative or distributive

 Converting between integral and floating point data 
types does change the bits 

36

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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