Data III & Integers I

CSE 351 Autumn 2024 Instructor: Ruth Anderson

Teaching Assistants:

Alexandra Michael Connie Chen Chloe Fong Chendur Jayavelu Joshua Tan Nikolas McNamee Nahush Shrivatsa Naama Amiel Neela Kausik Renee Ruan Rubee Zhao Samantha Dreussi Sean Siddens Waleed Yagoub

http://xkcd.com/257/

Relevant Course Information

- HW2 due tonight, Wednesday (10/02) @ 11:59 pm
- HW3 due Friday (10/04) @ 11:59 pm
- HW4 due Monday (10/07) @ 11:59 pm (out after class)
- Lab 1a due Tuesday (10/08) @11:59pm
- From here on out, at 11am on day of lecture:
 - Reading for that lecture is DUE at 11am
 - Lecture activities from the previous lecture are DUE at 11am

Lab 1a released!

- Labs can be found linked on our course home page:
 - https://courses.cs.washington.edu/courses/cse351/24au/labs/lab1a.html
- Workflow:
 - 1)Edit pointer.c
 - 2) Run the Makefile (make clean followed by make) and check for compiler errors & warnings
 - 3)Run ptest (./ptest) and check for correct behavior
 - 4)Run rule/syntax checker (python3 dlc.py) and check output
- Due Tuesday 10/08, will overlap a bit with Lab 1b
 - Submit in Gradescope we grade just your *last* submission
 - Don't wait until the last minute to submit! Check autograder output!

Lab Synthesis Questions

- All subsequent labs (after Lab 0) have a "synthesis question" portion
 - Can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Gradescope
 - These will be graded "by hand" (read by TAs)
- Intended to check your understanding of what you should have learned from the lab
 - Also great practice for short answer questions on the exams

Memory, Data, and Addressing

- Representing information as bits and bytes
 - Binary, hexadecimal, fixed-widths
- Organizing and addressing data in memory
 - Memory is a byte-addressable array
 - Machine "word" size = address size = register size
 - Endianness ordering bytes in memory
- Manipulating data in memory using C
 - Assignment
 - Pointers, pointer arithmetic, and arrays
- Boolean algebra and bit-level manipulations

Reading Review

- Terminology:
 - Bitwise operators (&, |, ^, ~)
 - Logical operators (&&, | |, !)
 - Short-circuit evaluation
 - Unsigned integers
 - Signed integers (Two's Complement)

7

Review Questions

 Compute the result of the following expressions for $= 0 \times 81;$ char c // OP 1000 0001 bituite 1000 0001 V1000 000 & $(\bullet) \times A \odot$ \sim 000000000 740 0×80 10 10 10 100 Compute the value of signed char SC $(\bullet) \times$ (•) (Two's Complement) 0000 -SC = |(0 000

Bitmasks

• Typically binary bitwise operators (&, |, \land) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation Operations for a bit (answer with 0, 1, or b: *b* & & 0 $b \ ^0 =$ *b* ^ 1

Bitmasks

Typically binary bitwise operators (&, |, ^) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation

★ Example:
$$b|0 = b$$
, $b|1 = 1$
() 1010101 ← input
() 11110000 ← bitmask ← for choose
() 11110101 ← output

Short-Circuit Evaluation

- If the result of a binary logical operator (&&, | |) can be determined by its first operand, then the second operand is never evaluated
 - Also known as early termination
- Example: (p && *p) for a pointer p to "protect" the dereference
 - Dereferencing NULL (0) results in a segfault

Numerical Encoding Design Example

- Encode a standard deck of playing cards
- ✤ 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

A ÷	*		2 *	*	4	• •	* *	4 *	* •	*	5 *	• 4 •	•	6 . .	*	7 ‡	***	*	**	*	9.	*	ļ		***	J +	₽ *	К *
		ŧ		÷	ŧ		*	÷	*	**	•	• •	• S	*	* *		*	* <u>*</u>	*	***	*	• •	ŧ	**	** **	i 🕰	₩ ŧ	K.
A ∳			2 ♠	۰		5	•	4 ∳	¢ (٨	5 ∳∙			6 ♠		7 ♠			⁸ .		9 ♠ ♠	• •	1		^	J +	Q ♠	K ♠
	C.	∙ ∛		Ŵ	Ż		Ý	¢ Σ	Ÿ,	• ⁺		- • •	• S	Ť			÷.	₽ ₽Ž	Ŷ	*	Ŭ	, " ∳ ∳	÷ 6	÷.	♥ ♥♥	r 🕎	8	₩
÷			2	۲		3	۷	4	•	•	5	•	•	€ ♥	۲	7	*,*	•	₿.	*	9		Î		•	J	9	K.
	•			٨	•		¥ A	¢ ,				•		*	♥ ▲å		* *	• • 7					•		Ă ≜ îi			
A •			2 •	٠		5	•	4	•	•	5.	• •		6 ♦	•	7	•.•	•	8,♦	•	9	•			•			K •
	٠	•					•					•		•	•		•	•	•			•			•			

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

- 52 cards
 "One-hot" encoding (similar to set notation)
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Pair of one-hot encoded values (two fields)
- Easier to compare suits and values, but still lots of bits used

Two better representations

- 3) Binary encoding of all 52 cards only 6 bits needed
 - $2^6 = 64 \ge 52$

low-order 6 bits of a byte

value

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?
- 4) Separate binary encodings of suit (2 bits) and value (4 bits)
 - Also fits in one byte, and easy to do comparisons

К	Q	J	• • •	3	2	Α
1101	1100	1011	• • •	0011	0010	0001

00

01

Compare Card Suits

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*. Here we turn all *but* the bits of interest in *v* to 0.

char hand[5]; // represents a 5-card hand char card1, card2; // two cards to compare card1 = hand[0]; card2 = hand[1]; ... if (sameSuitP(card1, card2)) { ... }

SUIT MASK = 0x30 = 0

#define SUIT MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
 return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

0

1

suit

1

0

0

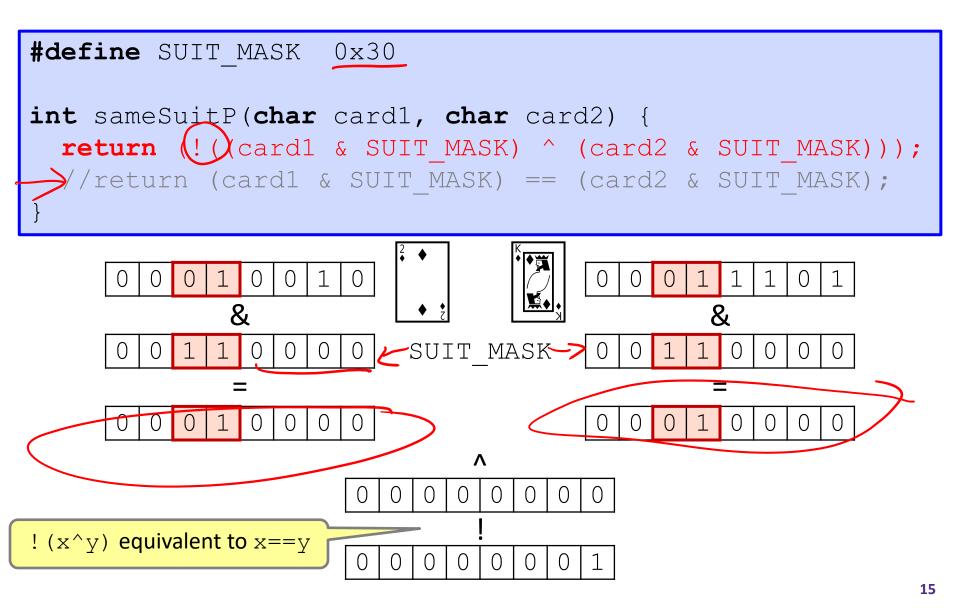
value

0

0

returns int

Compare Card Suits



Compare Card Values

```
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( greaterValue(card1, card2) ) { ... }
```

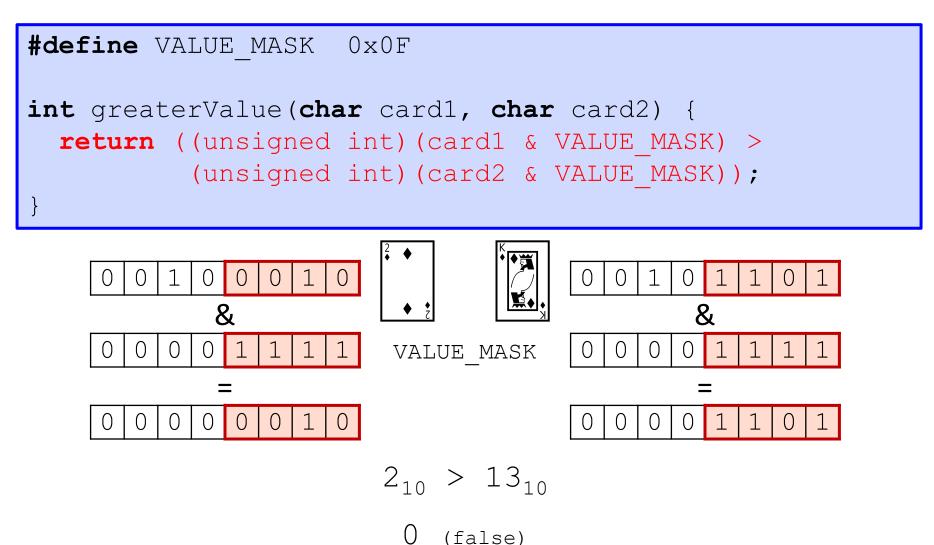
#define VALUE MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

value

Compare Card Values



Integers

- ***** Binary representation of integers
 - Unsigned and signed
- Shifting and arithmetic operations
- In C: Signed, Unsigned and Casting
- Consequences of finite width representations
 - Overflow, sign extension

Encoding Integers

- The hardware (and C) supports two flavors of integers
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- * Cannot represent all integers with w bits Only 2^w distinct bit patterns Unsigned values: $0 \dots 2^w 1$ $0 \dots 2^w 1$

 - Signed values: $-2^{w-1} \dots 2^{w-1} 1$
- * Example: 8-bit integers (e.g. char)

-∞ ←				→ + ∞
	-128	0	+128	+256
	-2^{8-1}	0	$+2^{8-1}$	+2 ⁸

-same widths, just shifted

Unsigned Integers (Review)

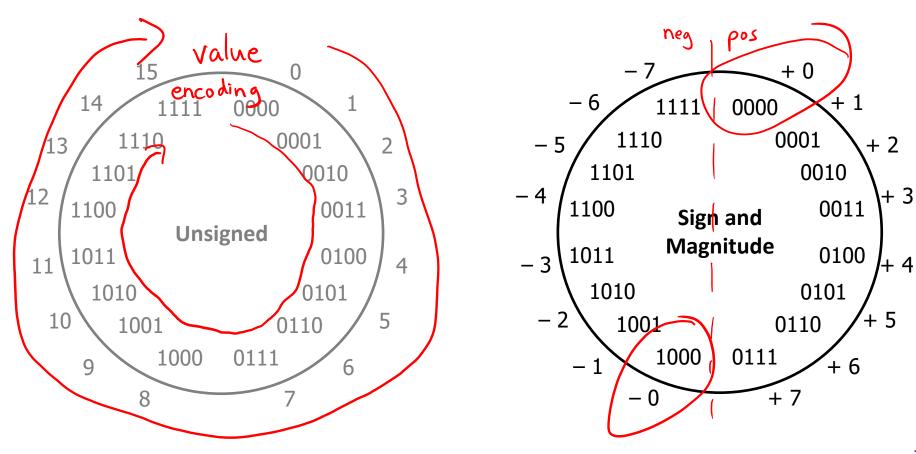
- Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- * Useful formula: $2^{N-1} + 2^{N-2} + ... + 2 + 1 = 2^N 1$
 - *i.e.*, N ones in a row = $2^{N} 1$
 - *e.g.*, 0b111111 = 63

Not used in practice for integers!

- Designate the high-order bit (MSB) as the "sign bit"
 - sign=0: positive numbers; sign=1: negative numbers
- Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned
 - All zeros encoding is still = 0
- Examples (8 bits):
 - $0x00 \neq 0000000_2$ is non-negative, because the sign bit is 0
 - 0x7F = 01111111₂ is non-negative (+127₁₀)
 - 0x85 = 10000101 is negative (-5₁₀)
 - 0x80 = 100000002 is negative... zero???

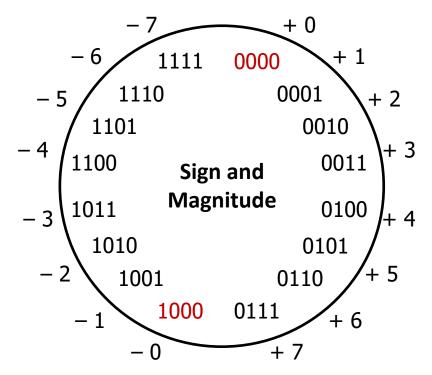
Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?



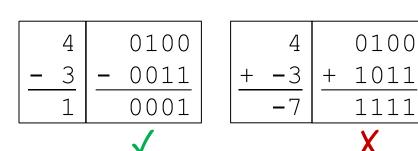
Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)

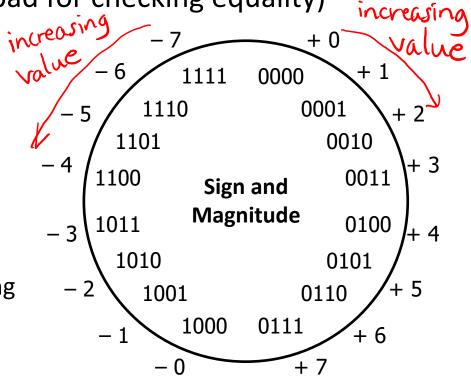


Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: 4-3 != 4+(-3)

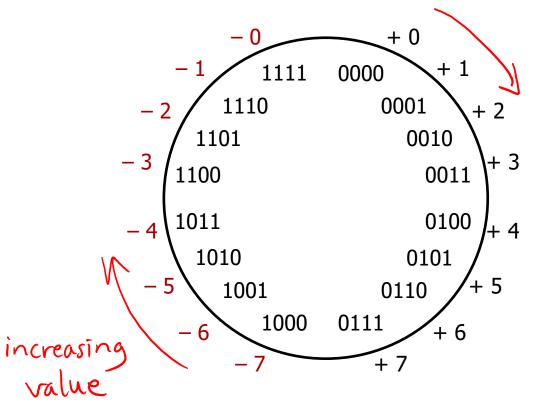


 Negatives "increment" in wrong direction!



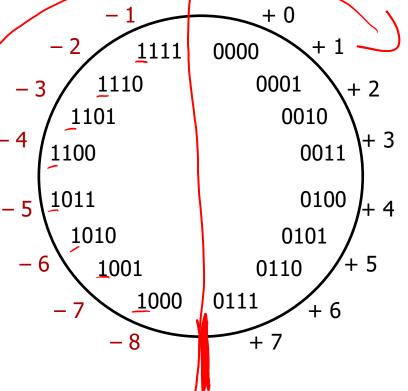
Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works



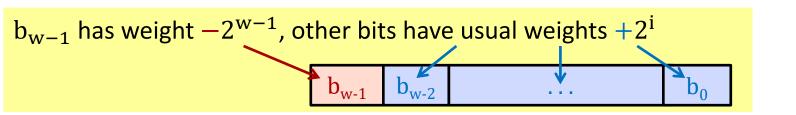
Two's Complement -

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works
 - 2) "Shift" negative numbers to eliminate -0
- MSB still indicates sign!
 - This is why we represent one more negative than positive number (-2^{N-1} to 2^{N-1} -1)

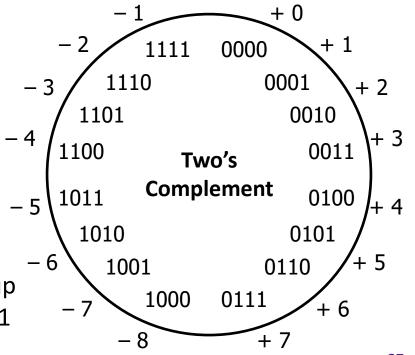


Two's Complement Negatives (Review)

Accomplished with one neat mathematical trick!



- 4-bit Examples:
 - 1010₂ unsigned:
 1*2³+0*2²+1*2¹+0*2⁰ = 10
 - 1010₂ two's complement:
 -1*2³+0*2²+1*2¹+0*2⁰ = -6
- -1 represented as:
 -1111₂ = -2³+(2³ 1)
 MSB makes it super negative, add up all the other bits to get back up to -1



Polling Question

- * Take the 4-bit number encoding x = 0b10
- Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two's Complement

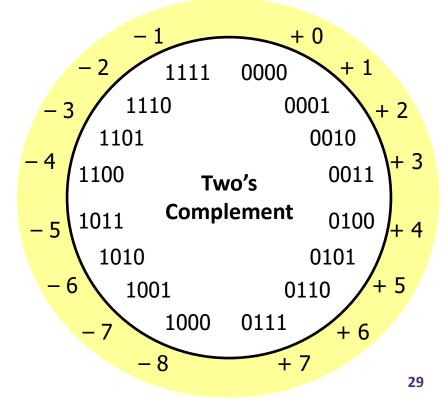
• Vote in Ed Lessons
A. -4
B. -5
(two's lent) Signe
$$d = -8 + 2 + 1 = -5$$

(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1 = -5$
(two's lent) Signe $d = -8 + 2 + 1$

Two's Complement is Great (Review)

- Roughly same number of (+) and (-) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0
- Simple negation procedure:
 - Get negative representation of any integer by taking bitwise complement and then adding one!

 $(\sim x + 1 == -x)$



Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (~) different than logical AND (& &), OR (||), and NOT (!)
 - Especially useful with bit masks
- Choice of *encoding scheme* is important
 - Tradeoffs based on size requirements and desired operations
- Integers represented using unsigned and two's complement representations
 - Limited by fixed bit width
 - We'll examine arithmetic operations next lecture