Data III & Integers I

CSE 351 Autumn 2024 Instructor: Ruth Anderson

Teaching Assistants:

Alexandra Michael Connie Chen Chloe Fong Chendur Jayavelu Joshua Tan Nikolas McNamee Nahush Shrivatsa Naama Amiel Neela Kausik Renee Ruan Rubee Zhao Samantha Dreussi Sean Siddens Waleed Yagoub

http://xkcd.com/257/

Relevant Course Information

- HW2 due tonight, Wednesday (10/02) @ 11:59 pm
- HW3 due Friday (10/04) @ 11:59 pm
- HW4 due Monday (10/07) @ 11:59 pm
- Lab 1a due Tuesday (10/08) @11:59pm
- From here on out, at 11am on day of lecture:
 - Reading for that lecture is DUE at 11am
 - Lecture activities from the previous lecture are DUE at 11am

Lab 1a released!

- Labs can be found linked on our course home page:
 - https://courses.cs.washington.edu/courses/cse351/24au/labs/lab1a.html
- Workflow:
 - 1)Edit pointer.c
 - 2) Run the Makefile (make clean followed by make) and check for compiler errors & warnings
 - 3)Run ptest (./ptest) and check for correct behavior
 - 4)Run rule/syntax checker (python3 dlc.py) and check output
- Due Tuesday 10/08, will overlap a bit with Lab 1b
 - Submit in Gradescope we grade just your *last* submission
 - Don't wait until the last minute to submit! Check autograder output!

Lab Synthesis Questions

- All subsequent labs (after Lab 0) have a "synthesis question" portion
 - Can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Gradescope
 - These will be graded "by hand" (read by TAs)
- Intended to check your understanding of what you should have learned from the lab
 - Also great practice for short answer questions on the exams

Memory, Data, and Addressing

- Representing information as bits and bytes
 - Binary, hexadecimal, fixed-widths
- Organizing and addressing data in memory
 - Memory is a byte-addressable array
 - Machine "word" size = address size = register size
 - Endianness ordering bytes in memory
- Manipulating data in memory using C
 - Assignment
 - Pointers, pointer arithmetic, and arrays
- Boolean algebra and bit-level manipulations

Reading Review

- Terminology:
 - Bitwise operators (&, |, ^, ~)
 - Logical operators (&&, | |, !)
 - Short-circuit evaluation
 - Unsigned integers
 - Signed integers (Two's Complement)

Review Questions

- * Compute the result of the following expressions for char c = 0x81;
 - C ^ C
 - ~c & 0×A9
 - c | | 0×80
 - ! ! C
- * Compute the value of signed char sc = 0xF0;
 (Two's Complement)

Bitmasks

- Typically binary bitwise operators (&, |, ^) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation
- Operations for a bit b (answer with 0, 1, b, or \overline{b}):
 - $b \& 0 = _$ $b \& 1 = _$
 $b | 0 = _$ $b | 1 = _$
 $b \land 0 = _$ $b \land 1 = _$

Bitmasks

 Typically binary bitwise operators (&, |, ^) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation

* Example:
$$b|0 = b, b|1 = 1$$

$$\begin{array}{c} \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 & \leftarrow \text{ input} \\ \hline 1 1 1 1 1 \bigcirc \bigcirc \bigcirc \bigcirc & \leftarrow \text{ bitmask} \\ \hline 1 1 1 1 \bigcirc 1 \bigcirc 1 & \leftarrow \text{ output} \\ \hline \mathbf{set to ose}^n & \forall \text{keep so is}^n \end{array}$$

Short-Circuit Evaluation

- If the result of a binary logical operator (&&, | |) can be determined by its first operand, then the second operand is never evaluated
 - Also known as early termination
- Example: (p && *p) for a pointer p to "protect" the dereference
 - Dereferencing NULL (0) results in a segfault

Numerical Encoding Design Example

- Encode a standard deck of playing cards
- ✤ 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

A ‡		_		2 ‡	*		3 ‡	*		4 .	*	5 *	*	*	6 ♣ ♣	*	7 *	*.	*	8 *	* *	9 *	•		10 * *	**	J +	₽ *	K *
	,	*	* ¥		÷	* 2		* *	ŧ Σ	*	*	;	*	• **	*	♣ **		* · *	♣ ╋Ž		***			• •	*	* * * * 0			
A				2 ∳			3 ♠	♠ ♠	Ĩ	4 ♠ ♠		5 •	•	^	6 ♠ ♠	♠	7	*	♠	8 •	* * *	9					J	₽ ₽	K ♠
		•	¥		Ý	Ś		Ý	\$ £	Ý	₩ †	; _	Ý	∳¢	•	♥		Ý	¢ţ	Ľ	¥¥¥			6	Ŭ	V	I Mar i		
÷		¥		2	۴		3 ♥	•		4 ♥	•	5 •	•	•	€ ● ●	•	7	**		₽ •		9					J		K
			Ŷ		٨	ŝ		٠	ŝ	•	•		•	¢¢	•	•		٠	≜ <u>î</u>				• •	6	•	na ô			
A •	•	٠		2 •	٠		3 +	• •		4 ♦	•	5 ,	•	•	€ ◆ ◆	* *	7	••	•	8 ◆		9			10 • •		J		K
			÷		٠	ż		٠	ŝ	•	•‡		•	• *	•	• • •		٠	• ;		♦ ` ♦		• •	6	•	• ▼ ♦ 'n		X# +	

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

52 cards

- "One-hot" encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Pair of one-hot encoded values (two fields)
- Easier to compare suits and values, but still lots of bits used

Two better representations

- 3) Binary encoding of all 52 cards only 6 bits needed
 - $2^6 = 64 \ge 52$

low-order 6 bits of a byte

value

suit

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?
- 4) Separate binary encodings of suit (2 bits) and value (4 bits)
 - Also fits in one byte, and easy to do comparisons

К	Q	J	•••	3	2	Α
1101	1100	1011	• • •	0011	0010	0001

Compare Card Suits

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*. Here we turn all *but* the bits of interest in *v* to 0.

char hand[5]; // represents a 5-card hand char card1, card2; // two cards to compare card1 = hand[0]; card2 = hand[1]; ... if (sameSuitP(card1, card2)) { ... }

SUIT MASK = 0x30 = 000

#define SUIT MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
 return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

0

1

suit

1

0

value

0

0

returns int

Compare Card Suits

Compare Card Values

```
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( greaterValue(card1, card2) ) { ... }
```

#define VALUE MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

value

Compare Card Values

Integers

- Binary representation of integers
 - Unsigned and signed
- Shifting and arithmetic operations
- In C: Signed, Unsigned and Casting
- Consequences of finite width representations
 - Overflow, sign extension

Encoding Integers

- The hardware (and C) supports two flavors of integers
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - Unsigned values: $0 \dots 2^w 1$
 - Signed values: $-2^{w-1} \dots 2^{w-1} 1$

same widths, just shifted * Example: 8-bit integers (e.g. char)

			•	
-00 ←				+ \co
-00 <	-128	0	+128	+256
	-2^{8-1}	0	$+2^{8-1}$	+2 ⁸

Unsigned Integers (Review)

- Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- * Useful formula: $2^{N-1} + 2^{N-2} + ... + 2 + 1 = 2^N 1$
 - *i.e.*, N ones in a row = $2^{N} 1$
 - *e.g.*, 0b111111 = 63

Not used in practice for integers!

- Designate the high-order bit (MSB) as the "sign bit"
 - sign=0: positive numbers; sign=1: negative numbers
- Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned
 - All zeros encoding is still = 0
- Examples (8 bits):
 - 0x00 = 00000000₂ is non-negative, because the sign bit is 0
 - 0x7F = 011111111₂ is non-negative (+127₁₀)
 - 0x85 = 10000101₂ is negative (-5₁₀)
 - 0x80 = 10000000₂ is negative... zero???

Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)

Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: 4-3 != 4+(-3)

 Negatives "increment" in wrong direction!

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works
 - 2) "Shift" negative numbers to eliminate –0
- MSB still indicates sign!
 - This is why we represent one more negative than positive number (-2^{N-1} to 2^{N-1} -1)

Two's Complement Negatives (Review)

Accomplished with one neat mathematical trick!

- 4-bit Examples:
 - 1010₂ unsigned:
 1*2³+0*2²+1*2¹+0*2⁰ = 10
 - 1010₂ two's complement:
 -1*2³+0*2²+1*2¹+0*2⁰ = -6
- -1 represented as:
 -1111₂ = -2³+(2³ 1)
 MSB makes it super negative, add up all the other bits to get back up to -1

Polling Question

- * Take the 4-bit number encoding x = 0b1011
- Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two's Complement
 - Vote in Ed Lessons
 - A. -4
 - B. -5
 - C. 11
 - D. -3
 - E. We're lost...

Two's Complement is Great (Review)

- Roughly same number of (+) and (-) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0
- Simple negation procedure:
 - Get negative representation of any integer by taking bitwise complement and then adding one!

 $(\sim x + 1 == -x)$

Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (~) different than logical AND (& &), OR (||), and NOT (!)
 - Especially useful with bit masks
- Choice of *encoding scheme* is important
 - Tradeoffs based on size requirements and desired operations
- Integers represented using unsigned and two's complement representations
 - Limited by fixed bit width
 - We'll examine arithmetic operations next lecture