
CSE351, Autumn 2024L04: Data III & Integers I

Data III & Integers I
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

http://xkcd.com/257/

http://xkcd.com/257/

CSE351, Autumn 2024L04: Data III & Integers I

Relevant Course Information

 HW2 due tonight, Wednesday (10/02) @ 11:59 pm
 HW3 due Friday (10/04) @ 11:59 pm
 HW4 due Monday (10/07) @ 11:59 pm
 Lab 1a due Tuesday (10/08) @11:59pm
 From here on out, at 11am on day of lecture:
 Reading for that lecture is DUE at 11am
 Lecture activities from the previous lecture are DUE at 11am

2

CSE351, Autumn 2024L04: Data III & Integers I

Lab 1a released!

 Labs can be found linked on our course home page:
 https://courses.cs.washington.edu/courses/cse351/24au/labs/lab1a.html

 Workflow:
1)Edit pointer.c
2)Run the Makefile (make clean followed by make) and

check for compiler errors & warnings
3)Run ptest (./ptest) and check for correct behavior
4)Run rule/syntax checker (python3 dlc.py) and check output

 Due Tuesday 10/08, will overlap a bit with Lab 1b
• Submit in Gradescope - we grade just your last submission
• Don’t wait until the last minute to submit! Check autograder output!

3

https://courses.cs.washington.edu/courses/cse351/24au/labs/lab1a.html

CSE351, Autumn 2024L04: Data III & Integers I

Lab Synthesis Questions

 All subsequent labs (after Lab 0) have a “synthesis
question” portion
 Can be found on the lab specs and are intended to be done

after you finish the lab
 You will type up your responses in a .txt file for

submission on Gradescope
 These will be graded “by hand” (read by TAs)

 Intended to check your understanding of what you
should have learned from the lab
 Also great practice for short answer questions on the exams

4

CSE351, Autumn 2024L04: Data III & Integers I

Memory, Data, and Addressing

 Representing information as bits and bytes
 Binary, hexadecimal, fixed-widths

 Organizing and addressing data in memory
 Memory is a byte-addressable array
 Machine “word” size = address size = register size
 Endianness – ordering bytes in memory

 Manipulating data in memory using C
 Assignment
 Pointers, pointer arithmetic, and arrays

 Boolean algebra and bit-level manipulations

5

CSE351, Autumn 2024L04: Data III & Integers I

Reading Review

 Terminology:
 Bitwise operators (&, |, ^, ~)
 Logical operators (&&, ||, !)
 Short-circuit evaluation
 Unsigned integers
 Signed integers (Two’s Complement)

6

CSE351, Autumn 2024L04: Data III & Integers I

Review Questions

 Compute the result of the following expressions for
char c = 0x81;
 c ^ c

 ~c & 0xA9

 c || 0x80

 !!c

 Compute the value of signed char sc = 0xF0;
(Two’s Complement)

7

CSE351, Autumn 2024L04: Data III & Integers I

Bitmasks

 Typically binary bitwise operators (&, |, ^) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

 Operations for a bit 𝑏𝑏 (answer with 0, 1, 𝑏𝑏, or �𝑏𝑏):

𝑏𝑏 & 0 = ____ 𝑏𝑏 & 1 = ____
𝑏𝑏 | 0 = ____ 𝑏𝑏 | 1 = ____
𝑏𝑏 ^ 0 = ____ 𝑏𝑏 ^ 1 = ____

8

CSE351, Autumn 2024L04: Data III & Integers I

Bitmasks

 Typically binary bitwise operators (&, |, ^) are used
with one operand being the “input” and other
operand being a specially-chosen bitmask (or mask)
that performs a desired operation

 Example: 𝑏𝑏|0 = 𝑏𝑏, 𝑏𝑏|1 = 1

9

01010101 ← input
| 11110000 ← bitmask
11110101

CSE351, Autumn 2024L04: Data III & Integers I

Short-Circuit Evaluation

 If the result of a binary logical operator (&&, ||) can
be determined by its first operand, then the second
operand is never evaluated
 Also known as early termination

 Example: (p && *p) for a pointer p to “protect” the
dereference
 Dereferencing NULL (0) results in a segfault

10

CSE351, Autumn 2024L04: Data III & Integers I

Numerical Encoding Design Example

 Encode a standard deck of playing cards
 52 cards in 4 suits
 How do we encode suits, face cards?

 What operations do we want to make easy to implement?
 Which is the higher value card?
 Are they the same suit?

11

CSE351, Autumn 2024L04: Data III & Integers I

Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

 “One-hot” encoding (similar to set notation)
 Drawbacks:

• Hard to compare values and suits
• Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

 Pair of one-hot encoded values (two fields)
 Easier to compare suits and values, but still lots of bits used

12

52 cards

4 suits

13 numbers

CSE351, Autumn 2024L04: Data III & Integers I

Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed
 26 = 64 ≥ 52

 Fits in one byte (smaller than one-hot encodings)
 How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value
(4 bits)

 Also fits in one byte, and easy to do comparisons

13

low-order 6 bits of a byte

suit value
♣ 00

♦ 01

♥ 10

♠ 11
K Q J . . . 3 2 A

1101 1100 1011 ... 0011 0010 0001

CSE351, Autumn 2024L04: Data III & Integers I

Compare Card Suits
char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (sameSuitP(card1, card2)) { ... }

14

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

returns int equivalent

CSE351, Autumn 2024L04: Data III & Integers I

Compare Card Suits

15

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
//return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);

}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂🃂 🃎🃎&

=

^

!

=

&

CSE351, Autumn 2024L04: Data III & Integers I

Compare Card Values

16

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare

card1 = hand[0];

card2 = hand[1];

...

if (greaterValue(card1, card2)) { ... }

CSE351, Autumn 2024L04: Data III & Integers I

Compare Card Values

17

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
return ((unsigned int)(card1 & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));
}

0 0 1 0 0 0 1 0 🃂🃂 0 0 1 0 1 1 0 1🃎🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
==

210 > 1310

0 (false)

CSE351, Autumn 2024L04: Data III & Integers I

Integers

 Binary representation of integers
 Unsigned and signed

 Shifting and arithmetic operations
 In C: Signed, Unsigned and Casting
 Consequences of finite width representations
 Overflow, sign extension

18

CSE351, Autumn 2024L04: Data III & Integers I

Encoding Integers

 The hardware (and C) supports two flavors of integers
 unsigned – only the non-negatives
 signed – both negatives and non-negatives

 Cannot represent all integers with 𝑤𝑤 bits
 Only 2𝑤𝑤 distinct bit patterns
 Unsigned values: 0 ... 2𝑤𝑤–1
 Signed values: −2𝑤𝑤−1 … 2𝑤𝑤−1–1

 Example: 8-bit integers (e.g. char)

19

0
-∞

+256+128−128
+𝟐𝟐𝟖𝟖+𝟐𝟐𝟖𝟖−𝟏𝟏−𝟐𝟐𝟖𝟖−𝟏𝟏

+∞

𝟎𝟎

CSE351, Autumn 2024L04: Data III & Integers I

Unsigned Integers (Review)

 Unsigned values follow the standard base 2 system
 b7b6b5b4b3b2b1b0 = b727 + b626 + ⋯+ b121 + b020

 Useful formula: 2N−1 + 2N−2 + … + 2 + 1 = 2N − 1
 i.e., N ones in a row = 2N − 1
 e.g., 0b111111 = 63

20

CSE351, Autumn 2024L04: Data III & Integers I

Sign and Magnitude

 Designate the high-order bit (MSB) as the “sign bit”
 sign=0: positive numbers; sign=1: negative numbers

 Benefits:
 Using MSB as sign bit matches positive numbers with

unsigned
 All zeros encoding is still = 0

 Examples (8 bits):
 0x00 = 000000002 is non-negative, because the sign bit is 0
 0x7F = 011111112 is non-negative (+12710)
 0x85 = 100001012 is negative (-510)
 0x80 = 100000002 is negative...

21

... zero???

Not used in practice
for integers!

CSE351, Autumn 2024L04: Data III & Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks?

22

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

Unsigned
Sign and

Magnitude

Not used in practice
for integers!

CSE351, Autumn 2024L04: Data III & Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0 (bad for checking equality)

23

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

Sign and
Magnitude

Not used in practice
for integers!

CSE351, Autumn 2024L04: Data III & Integers I

Sign and Magnitude

 MSB is the sign bit, rest of the bits are magnitude
 Drawbacks:
 Two representations of 0 (bad for checking equality)
 Arithmetic is cumbersome

• Example: 4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!

24

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

0100
+ 1011
1111

0100
- 0011
0001

4
- 3
1

✓

4
+ -3
-7

✗

Sign and
Magnitude

Not used in practice
for integers!

CSE351, Autumn 2024L04: Data III & Integers I

Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works

25

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

CSE351, Autumn 2024L04: Data III & Integers I

Two’s Complement

 Let’s fix these problems:
1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate –0

 MSB still indicates sign!
 This is why we represent one

more negative than positive
number (-2𝑁𝑁−1 to 2𝑁𝑁−1 −1)

26

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

CSE351, Autumn 2024L04: Data III & Integers I

Two’s Complement Negatives (Review)

 Accomplished with one neat mathematical trick!

 4-bit Examples:
• 10102 unsigned:

1*23+0*22+1*21+0*20 = 10
• 10102 two’s complement:

-1*23+0*22+1*21+0*20 = –6

 -1 represented as:
11112 = -23+(23 – 1)
• MSB makes it super negative, add up

all the other bits to get back up to -1
27

bw−1 has weight −2w−1, other bits have usual weights +2i

. . . b0bw-1 bw-2

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

CSE351, Autumn 2024L04: Data III & Integers I

Polling Question

 Take the 4-bit number encoding x = 0b1011
 Which of the following numbers is NOT a valid

interpretation of x using any of the number
representation schemes discussed today?
 Unsigned, Sign and Magnitude, Two’s Complement
 Vote in Ed Lessons

A. -4
B. -5
C. 11
D. -3
E. We’re lost…

28

CSE351, Autumn 2024L04: Data III & Integers I

Two’s Complement is Great (Review)

 Roughly same number of (+) and (–) numbers
 Positive number encodings match unsigned
 Single zero
 All zeros encoding = 0

 Simple negation procedure:
 Get negative representation

of any integer by taking
bitwise complement and
then adding one!
(~x + 1 == -x)

29

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

CSE351, Autumn 2024L04: Data III & Integers I

Summary

 Bit-level operators allow for fine-grained
manipulations of data
 Bitwise AND (&), OR (|), and NOT (~) different than logical

AND (&&), OR (||), and NOT (!)
 Especially useful with bit masks

 Choice of encoding scheme is important
 Tradeoffs based on size requirements and desired

operations
 Integers represented using unsigned and two’s

complement representations
 Limited by fixed bit width
 We’ll examine arithmetic operations next lecture

30

	Data III & Integers I�CSE 351 Autumn 2024
	Relevant Course Information
	Lab 1a released!
	Lab Synthesis Questions
	Memory, Data, and Addressing
	Reading Review
	Review Questions
	Bitmasks
	Bitmasks
	Short-Circuit Evaluation
	Numerical Encoding Design Example
	Two possible representations
	Two better representations
	Compare Card Suits
	Compare Card Suits
	Compare Card Values
	Compare Card Values
	Integers
	Encoding Integers
	Unsigned Integers (Review)
	Sign and Magnitude
	Sign and Magnitude
	Sign and Magnitude
	Sign and Magnitude
	Two’s Complement
	Two’s Complement
	Two’s Complement Negatives (Review)
	Polling Question
	Two’s Complement is Great (Review)
	Summary

