
CSE351, Autumn 2024L03: Memory & Data II

Memory, Data, & Addressing II
CSE 351 Autumn 2024
Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub http://xkcd.com/138/

http://xkcd.com/138/

CSE351, Autumn 2024L03: Memory & Data II

Relevant Course Information

 HW1 due tonight, Monday (9/30) @ 11:59 pm
 Lab 0 due tonight, Monday (9/30) @ 11:59 pm
 HW2 due Wednesday (10/02) @ 11:59 pm
 Lab 1a coming soon! due next Monday (10/07)
 Pointers in C
 Submitted via Gradescope
 Last submission graded, can optionally work with a partner

• One student submits, then add their partner to the submission
 Short answer “synthesis questions” for after the lab

 Ed Discussion etiquette
 For anything that doesn’t involve sensitive information or a solution,

post publicly (you can post anonymously!)
 If you feel like you question has been sufficiently answered, make sure

that a response has a checkmark
2

CSE351, Autumn 2024L03: Memory & Data II

Late Days

 You are given 5 late days for the whole quarter
 Late days can only apply to Labs
 No benefit to having leftover late days

 Count lateness in days (even if just by a second)
 Special: weekends count as one day
 No submissions accepted more than two days late

 Late penalty is 10% deduction of your score per day
 Only late labs are eligible for penalties
 Penalties applied at end of quarter to maximize your grade

 Use at own risk – don’t want to fall too far behind
 Intended to allow for unexpected circumstances

3

CSE351, Autumn 2024L03: Memory & Data II

Memory, Data, and Addressing

 Representing information as bits and bytes
 Binary, hexadecimal, fixed-widths

 Organizing and addressing data in memory
 Memory is a byte-addressable array
 Machine “word” size = address size = register size
 Endianness – ordering bytes in memory

 Manipulating data in memory using C
 Assignment
 Pointers, pointer arithmetic, and arrays

 Boolean algebra and bit-level manipulations

4

CSE351, Autumn 2024L03: Memory & Data II

Reading Review

 Terminology:
 address-of operator (&), dereference operator (*), NULL
 box-and-arrow memory diagrams
 pointer arithmetic, arrays
 C string, null character, string literal

5

CSE351, Autumn 2024L03: Memory & Data II

Review Questions

 int x = 351;
char* p = &x;
int ar[3];

 How much space does
the variable p take up?
A. 1 byte
B. 2 bytes
C. 4 bytes
D. 8 bytes

6

 Which of the following
expressions evaluate to
an address?
A. x + 10
B. p + 10
C. &x + 10
D. *(&p)
E. ar[1]
F. &ar[2]

64-bit example
(pointers are 64-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Addresses and Pointers in C
 & = “address of” operator
 * = “value at address” or “dereference” operator

int* ptr;

int x = 5;

int y = 2;

ptr = &x;

y = 1 + *ptr;

7

Declares a variable, ptr, that is a pointer to
(i.e. holds the address of) an int in memory

Declares two variables, x and y, that hold ints,
and initializes them to 5 and 2, respectively

Sets ptr to the address of x
(“ptr points to x”)

Sets y to “1 plus the value stored at the
address held by ptr.” Because ptr
points to x, this is equivalent to y=1+x;“Dereference ptr”

What is *(&y) ?

* is also used with
variable declarations

CSE351, Autumn 2024L03: Memory & Data II

Pointer Operators

 & = “address of” operator
 * = “value at address” or “dereference” operator

 Operator confusion
 The pointer operators are unary (i.e., take 1 operand)
 These operators both have binary forms

• x & y is bitwise AND (we’ll talk about this next lecture)
• x * y is multiplication

 * is also used as part of the data type in pointer variable
declarations – this is NOT an operator in this context!

8

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 A variable is represented by a location
 Declaration ≠ initialization (initially holds random data)
 int x, y;
 x is at address 0x04, y is at 0x18

9

x

y

0x00 0x01 0x02 0x03

A7 00 32 00
00 01 29 F3
EE EE EE EE
FA CE CA FE
26 00 00 00
00 00 10 00
01 00 00 00
FF 00 F4 96
DE AD BE EF
00 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 A variable is represented by a location
 Declaration ≠ initialization (initially holds random data)
 int x, y;
 x is at address 0x04, y is at 0x18

10

x

y

0x00 0x01 0x02 0x03

00 01 29 F3

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

32-bit example
(pointers are 32-bits wide)

little-endian

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

11

00 01 29 F300 00 00 00 x

y

0x00 0x01 0x02 0x03

01 00 00 00

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

12

00 00 00 00

01 00 00 0000 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

little endian!

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, store in x

13

00 00 00 00

00 27 D0 3C

03 27 D0 3C x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, store in x

 int* z;
 z is at address 0x20

14

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

zDE AD BE EF

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 left-hand side = right-hand side;
 LHS must evaluate to a location
 RHS must evaluate to a value (could be an address)
 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, store in x

 int* z = &y + 3;
 Get address of y, “add 3”, store in z

15

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

Pointer arithmetic

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Pointer Arithmetic

 Pointer arithmetic is scaled by the size of target type
 In this example, sizeof(int) = 4

 int* z = &y + 3;
 Get address of y, add 3*sizeof(int), store in z
 &y = 0x18
 24 + 3*(4) = 36

 Pointer arithmetic can be dangerous!
 Can easily lead to bad memory accesses
 Be careful with data types and casting

16

= 1*161 + 8*160 = 24

= 2*161 + 4*160 = 0x24

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, store in x

 int* z = &y + 3;
 Get address of y, add 12, store in z

 *z = y;
 What does this do?

17

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Assignment in C

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, store in x

 int* z = &y + 3;
 Get address of y, add 12, store in z

 *z = y;
 Get value of y, put in address

stored in z
18

03 27 D0 3C

00 27 D0 3C

x

y

0x00 0x01 0x02 0x03

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z24 00 00 00
00 27 D0 3C

The target of a pointer
is also a location

& = “address of”
* = “dereference”

32-bit example
(pointers are 32-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Arrays in C
Declaration: int a[6];

19

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

a (array name) returns the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

element type

name
number of
elements

a[1]
a[3]
a[5]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

64-bit example
(pointers are 64-bits wide)

CSE351, Autumn 2024L03: Memory & Data II

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

20

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object
a (array name) returns the array’s address

CSE351, Autumn 2024L03: Memory & Data II

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

21

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

0000015F

00000BAD

00000BAD

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object
a (array name) returns the array’s address

CSE351, Autumn 2024L03: Memory & Data II

0000015F

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

22

0000000A

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object
a (array name) returns the array’s address

CSE351, Autumn 2024L03: Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

0000015F

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p+1) = 0xB;

p = p + 2;

23

0000000A

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

0000015F

00000BAD

00000BAD

p

equivalent

00000010 00000000
equivalent

0000000B

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object
a (array name) returns the array’s address

CSE351, Autumn 2024L03: Memory & Data II

array indexing = address arithmetic
(both scaled by the size of the type)

Arrays in C
Declaration: int a[6];

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;
checking: a[-1] = 0xBAD;

Pointers: int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;
*(p+1) = 0xB;

p = p + 2;

*p = a[1] + 1; 24

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

a[0]
a[2]
a[4]

0x4
0xC

0x5
0xD

0x6
0xE

0x7
0xF

0x0
0x8

0x1
0x9

0x2
0xA

0x3
0xB

equivalent

equivalent

0000000A

0000015F

00000BAD

00000BAD

00000018 00000000

0000000B

p

0000000C

&a[i] is the address of a[0] plus i times
the element size in bytes

Arrays are adjacent locations in memory
storing the same type of data object
a (array name) returns the array’s address

CSE351, Autumn 2024L03: Memory & Data II

Question: The variable values after Line 3 executes are
shown on the right. What are they after Line 5?
 Vote in Ed Lessons

25

1 void main() {
2 int a[] = {0x5,0x10};
3 int* p = a;
4 p = p + 1;
5 *p = *p + 1;
6 }

0x101 0x5 0x11(A)
0x104 0x5 0x11(B)
0x101 0x6 0x10(C)

(D)

p a[0] a[1]

0x100a[0]
a[1]

p

5
10

100

...

Address
(hex)

Data
(hex)

CSE351, Autumn 2024L03: Memory & Data II

Representing strings (Review)

 C-style string stored as an array of bytes (char*)
 No “String” keyword, unlike Java
 Elements are one-byte ASCII codes for each character

26

32 space 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o 127 del

ASCII: American Standard Code for Information Interchange

CSE351, Autumn 2024L03: Memory & Data II

Representing strings (Review)

 C-style string stored as an array of bytes (char*)
 No “String” keyword, unlike Java
 Elements are one-byte ASCII codes for each character
 Last character followed by a 0 byte ('\0')

(a.k.a. "null character")

 "Stay safe WA" is a 13 byte string

27

Decimal:.. 83 116 97 121 32 115 97 102 101 32 87 65 0
Hex:.. 0x53 0x74 0x61 0x79 0x20 0x73 0x61 0x66 0x65 0x20 0x57 0x41 0x00

Text:.. 'S' 't' 'a' 'y' ' ' 's' 'a' 'f' 'e' ' ' 'W' 'A' '\0'

CSE351, Autumn 2024L03: Memory & Data II

char s[6] = "12345";

Endianness and Strings

 Byte ordering (endianness) is not an issue for 1-byte
values
 The whole array does not constitute a single value
 Individual elements are values; chars are single bytes

28

C (char = 1 byte)

0x31 = 49 decimal = ASCII ‘1’ 33
34

31
32

35
00

33
34

31
32

35
00

0x00
0x01
0x02
0x03
0x04
0x05

0x00
0x01
0x02
0x03
0x04
0x05

'1'
'2'
'3'
'4'
'5'
'\0'

IA32, x86-64
(little-endian)

SPARC
(big-endian)

String literal

CSE351, Autumn 2024L03: Memory & Data II

Examining Data Representations

 Code to print byte representation of data
 Treat any data type as a byte array by casting its address to
char*
 C has unchecked casts !! DANGER !!

 printf legend:
 Special characters: \t = Tab, \n = newline
 Format specifiers: %p = pointer,

%.2hhX = 1 byte (hh) in hex (X), padding to 2 digits (.2)
29

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)
printf("%p\t0x%.2hhX\n", start+i, *(start+i));

printf("\n");
}

CSE351, Autumn 2024L03: Memory & Data II

Examining Data Representations

 Code to print byte representation of data
 Treat any data type as a byte array by casting its address to
char*
 C has unchecked casts !! DANGER !!

30

void show_bytes(char* start, int len) {
int i;
for (i = 0; i < len; i++)
printf("%p\t0x%.2hhX\n", start+i, *(start+i));

printf("\n");
}

void show_int(int x) {
show_bytes((char *) &x, sizeof(int));

}

CSE351, Autumn 2024L03: Memory & Data II

show_bytes Execution Example

 Result (Linux x86-64):
 Note: The addresses will change on each run (try it!), but

fall in same general range

31

int x = 123456; // 0x00 01 E2 40
printf("int x = %d;\n", x);
show_int(x); // show_bytes((char *) &x,
sizeof(int));

int x = 123456;
0x7fffb245549c 0x40
0x7fffb245549d 0xE2
0x7fffb245549e 0x01
0x7fffb245549f 0x00

CSE351, Autumn 2024L03: Memory & Data II

Summary

 Assignment in C results in value being put in memory
location

 Pointer is a C representation of a data address
 & = “address of” operator
 * = “value at address” or “dereference” operator

 Pointer arithmetic scales by size of target type
 Convenient when accessing array-like structures in memory
 Be careful when using – particularly when casting variables

 Arrays are adjacent locations in memory storing the
same type of data object
 Strings are null-terminated arrays of characters (ASCII)

32

	Memory, Data, & Addressing II�CSE 351 Autumn 2024
	Relevant Course Information
	Late Days
	Memory, Data, and Addressing
	Reading Review
	Review Questions
	Addresses and Pointers in C
	Pointer Operators
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Pointer Arithmetic
	Assignment in C
	Assignment in C
	Arrays in C
	Arrays in C
	Arrays in C
	Arrays in C
	Arrays in C
	Arrays in C
	Question: The variable values after Line 3 executes are shown on the right. What are they after Line 5?�
	Representing strings (Review)
	Representing strings (Review)
	Endianness and Strings
	Examining Data Representations
	Examining Data Representations
	show_bytes Execution Example
	Summary

