YA UNIVERSITY of WASHINGTON

Memory, Data, & Addressing li

CSE 351 Autumn 2024

Instructor:
Ruth Anderson

Teaching Assistants:

Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

L03: Memory & Data Il

CSE351, Autumn 2024

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

0x3A29212A 52~ bt
Ox6339292C, . .
OK7363532E. addresses

| HATE YOU.

a3t

http://xkcd.com/138/

http://xkcd.com/138/

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Relevant Course Information

HW1 due tonight, Monday (9/30) @ 11:59 pm
Lab O due tonight, Monday (9/30) @ 11:59 pm
HW2 due Wednesday (10/02) @ 11:59 pm

Lab 1a coming soon! due next Monday (10/07)

" Pointersin C
= Submitted via Gradescope

= Last submission graded, can optionally work with a partner
« One student submits, then add their partner to the submission

= Short answer “synthesis questions” for after the lab

Ed Discussion etiquette

® For anything that doesn’t involve sensitive information or a solution,
post publicly (you can post anonymously!)

= If you feel like you question has been sufficiently answered, make sure
that a response has a checkmark

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Late Days

» You are given 5 late days for the whole quarter
= |ate days can only apply to Labs
" No benefit to having leftover late days
+» Count lateness in days (even if just by a second)
= Special: weekends count as one day
= No submissions accepted more than two days late
» Late penalty is 10% deduction of your score per day
"= Only late labs are eligible for penalties
" Penalties applied at end of quarter to maximize your grade
» Use at own risk — don’t want to fall too far behind

" |Intended to allow for unexpected circumstances

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il

Memory, Data, and Addressing

» Representing information as bits and bytes

" Binary, hexadecimal, fixed-widths

» Organizing and addressing data in memory
"= Memory is a byte-addressable array
" Machine “word” size = address size = register size
" Endianness — ordering bytes in memory

» Manipulating data in memory using C

= Assighment

" Pointers, pointer arithmetic, and arrays

» Boolean algebra and bit-level manipulations

CSE351, Autumn 2024

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Reading Review

+» Terminology:
= address-of operator (&), dereference operator (x), NULL
" box-and-arrow memory diagrams
" pointer arithmetic, arrays
= Cstring, null character, string literal

YA UNIVERSITY of WASHINGTON

« 1Nt x =

Review Questions

351;
Charx p = &x;
int ar|3];

+» How much space does

the variable p take up?
A.

B. 2 bytes

C. 4 bytes

D. 8 bytes

L03: Memory & Data Il

CSE351, Autumn 2024

[64-bit example]
()

pointers are 64-bits wide

+ Which of the following
expressions evaluate to
an address?

nom 9O) @ >

o + 10

o &x + 10
. *(&p)
car| 1]
&ar| 2]

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Addresses and Pointers in C

* is also used with
variable declarations

+ & ="“address of” operator —
*

« * =“value at address” or “dereference” operator
] Declares a variable, ptr, that is a pointer to
int* ptr; (i.e. holds the address of) an int in memory

int x = 5; Declares two variables, x and y, that hold ints,
and initializes them to 5 and 2, respectively

int v = 2;

tr = §x- Sets ptr to the address of x
P ’ (“ptr points to x”)

= * .
Y 1+ /p\tr ! Sets v to “1 plus the value stored at the

address held by ptr.” Because ptr
points to x, this is equivalent to y=1+x;

“Dereference ptr”

What is * (&) ?

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Pointer Operators

+» & ="address of” operator
+» ~ = “value at address” or “dereference” operator

+» Operator confusion
" The pointer operators are unary (i.e., take 1 operand)

" These operators both have binary forms
- X & v is bitwise AND (we’ll talk about this next lecture)
- X * vy is multiplication

" x is also used as part of the data type in pointer variable
declarations — this is NOT an operator in this context!

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Assignment in C

+ A variable is represented by a location
+ Declaration # initialization (initially holds random data)

/) - e
« 1nt x, vy; 0x00 0x01 O0x02 0x03

" x is at address 0x04, v is at 0x18 Ox00 [A7 1 00! 32! 00
Ox04|[00:01:29!F3|X

OxO8 | EE ! EE ! EE ! EE
OxOC| FA ' CE ' CA ' FE
Ox10]1 26 ' 00 ' 00 ' 0O
Ox14 | 00 00 10 00
0x18]01:00:00:00]|y
Ox1IC| FF r 00 F4 ! 96
Ox20 | DE ! AD ! BE ! EF
Ox24 100! 00! 00! 00

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

[32-bit example]
()

pointers are 32-bits wide

Assignment in C

little-endian

« A variable is represented by a location

+ Declaration # initialization (initially holds random data)
«» int x, vy;

= xis at address 0x04, vy is at 0x18 0x00
O0x04 | 00

Ox08
Ox0C
0x10
Ox14
Ox18] 01
Ox1C
0x20
Ox24

0x00 Ox01 0x02 0x03

01129 F3|X

00 | 00

00 | v

10

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

[32-bit example]
()

pointers are 32-bits wide

Assignment in C

& = “address of”

. . . * = “dereference”
+ left-hand side = right-hand side;
= | HS must evaluate to a location

= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0x01 0x02 0x03

Ox00
Ox04 | 00
o x = 0; 0x08
Ox0C
0x10
Ox14
Ox18] 01
Ox1C
0x20
Ox24

« int x, vy;

001 00100 |X

00 | 00

00 | v

11

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

[32-bit example]
()

pointers are 32-bits wide

Assignment in C

& = “address of”

. . . * = “dereference”
» left-hand side = right-hand side;
= | HS must evaluate to a location

= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0x01 0x02 0x03

0x00
0x04 [00
e x = 0; Ox08

0x0C
» vy = 0x3CD02700; 0x10

N~ little endian! %
Ox18 | 00
Ox1C
0x20
Ox24

«» int x, vy;

00 ; 00 : 00 | X

27 1 DO

3|y

12

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

[32-bit example]
()

pointers are 32-bits wide

Assignment in C

& = “address of”
* = “dereference”

» left-hand side = right-hand side;
"= LHS must evaluate to a location
= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0x01 O0x02 Ox03
< 1nt x vV 0x00 | | |
. ’ ’ Ox04 103127 1D0! 3C|X
e x = 0; 0x08| | | @
0x0C L
« vy = 0x3CD02700; 0x10 I
. B) Ox14 R
X =yt 3; Ox18 [00 ! 27 1 DO ! 3C|Vy
" Getvalue at vy, add 3, store in x 0x1C : : :
0x20 : : :
Ox24 | | |

13

YA UNIVERSITY of WASHINGTON

L03: Memory & Data Il

Assignment in C

*

left-hand side = right-hand side;

= | HS must evaluate to a location

CSE351, Autumn 2024

32-bit example
(pointers are 32-bits wide)

& = “address of”

* = “dereference”

= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location

int x, vy;

x = 0;
y = 0x3CD02700;
X =y + 3;

" Get value at y, add 3, store in x
int* z;

= 7 is at address 0x20

Ox00
0Ox04
Ox08
Ox0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24

0x00 Ox01 0x02 0x03

03 127 1D0! 3C
00 ! 27 1 DO ! 3C
DE ! AD ! BE ! EF

14

YA UNIVERSITY of WASHINGTON

Assignment in C

*

left-hand side = right-hand side;

LO3: Memory & Data Il CSE351, Autumn 2024

[32-bit example]
()

pointers are 32-bits wide

& = “address of”
* = “dereference”

"= LHS must evaluate to a location
= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0X00 0x01 0x02 O0x03

int x, v; Ox001 . . |

! ’ Ox04 (031271 D0!3C|x
x = 0; 0x08 : : :
Ox0C ! | |
y = 0x3CD02700; 0x10 C 1
_ . Ox14 L

X =y + 3 Ox18 [00 ! 27 i1 DO ! 3C |y
" Getvalue at vy, add 3, store in x 0x1C : : :

. Ox20]|24: 00! 00! 00 |Z
int* z = &y + 37 x24T

= Get address of v, “add 3”7, store in z

ﬁ Pointer arithmetic J 15

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Pointer Arithmetic

+ Pointer arithmetic is scaled by the size of target type
" |n this example, sizeof (int) =4
« int* z = &y + 3;
" Get address of v, add 3*sizeof (int), storein z
" gy = 0x18 = 1*16% + 8*16° = 24
" 24 + 3*(4) = 36 = 2*¥16et + 4*16Y = 0x24

+ Pointer arithmetic can be dangerous!
" Can easily lead to bad memory accesses
" Be careful with data types and casting

16

YA UNIVERSITY of WASHINGTON

L03: Memory & Data Il

Assignment in C

int x, vy;

x = 0;
y = 0x3CD02700;
X =y + 3;

" Get value at vy, add 3, store in x
int* z = &y + 3;
" Get address of y, add 12, store in z

* 7 = y;
" What does this do?

Ox00
0Ox04
Ox08
Ox0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24

CSE351, Autumn 2024

32-bit example
(pointers are 32-bits wide)

& = “address of”

* = “dereference”

0x00 Ox01 0x02 0x03

03 127 1D0! 3C
00 ! 27 1 DO ! 3C
24 100 ! 00 ! 00

17

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

[32-bit example]
()

pointers are 32-bits wide

Assignment in C

& = “address of”

] * = “dereference”
« 1nt x, vy;

o X = 0;
+y = 0x3CD02700; 0x00 O0x01 O0x02 Ox03
Ox04 |03 :127:D0!3C|X
= Getvalue at y, add 3, store in x 0x08 C 1
» int* = + 3; 0x0C .
int* z &Yy 3; Ox10 —t—
" Get address of y, add 12, storein z 0x14 R
The target of a pointer Ox18 [00 : 27 : DO : 3C |V
is also a location Ox1C : : |
o Xz o= y; 0x20 [24 1 00 ; 00 ! 00 | Z
Ox24 | 00 ! 27 1 DO ! 3C

= Get value of y, put in address

stored in z
18

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C

a (array name) returns the array’s address

Declaration: int a| 64-bit example
(pointers are 64-bits wide)
eIementﬁ all]
number of
elements al3]
al5]

Ox0O Ox1 Ox2 Ox4 Ox5 Ox6 Ox7
Ox8 O0x9 OxA O OxC OxD OxE OxF

W\
W

W

*V

N

0x00
0x08
al0] 0x10
al2] 0x18
al4] 0x20
0x28
0x30
0x38
0x40
0x48

19

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C

a (array name) returns the array’s address

&a[i] isthe addressof a[0] plus i times

Declaration: int a[6]; .
the element size in bytes

Indexing: al[0] = 0x015f;
alb] = al0];

OxO Ox1 Ox2 Ox3 O0x4 Ox5 Ox6 O0Ox7
Ox8 O0x9 OxA OxB OxC OxD OxE OxF

0x00
0x08
al0] Ox10 | 5F
al2] 0x18
al4] 0x20
0x28
0x30
0x38
0x40
0x48

01:00 ;00

S5F101:00: 00

20

YA UNIVERSITY of WASHINGTON

Arrays in C

L03: Memory & Data Il

Declaration: int a[6];

Indexing: al[0]
al[5]
No bounds a6

]
checking: al[-1]

Ox015f;
al0];

O0xBAD;
O0xBAD;

CSE351, Autumn 2024

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe addressof a[0] plus i times
the element size in bytes

OxO Ox1 Ox2 Ox3 O0x4 Ox5 Ox6 O0Ox7
Ox8 O0x9 OxA OxB OxC OxD OxE OxF

0x00
0x08
0x10 | 5F
Ox18
0x20
0x28 | AD
0x30
0x38
0x40
0x48

AD 0B} 00} 00

01:00 ;00

01:00 ! 00

0B : 00 ! 00

21

YA UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int a[6];

Indexing: al[0] = 0x015f;
alb] = al0];
No bounds a[6] = 0xBAD;
checking: al[-1] = O0xBAD;
Pointers: int* p;
. ; 2;[0] - [0]
E = OXA', alz]
P / 4]
P

L03: Memory & Data Il

CSE351, Autumn 2024

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe addressof a[0] plus i times
the element size in bytes

OxO Ox1 Ox2 Ox3 O0x4 Ox5 Ox6 Ox7

Ox8 O0x9 OxA OxB O0OxC OxD OxE OxF
0x00 Lo
0x08 ' OB ! 00 ! 00
0x10 R
0x18 R
0x20 10100 00
0x28 R
0x30 Lo
0x38 R
0x40 100! 00! 00
0x48 R

22

YA UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int a[6];

Indexing: al[0] = 0x015f;
alb] = al0];
No bounds a[6] = 0xBAD;
checking: al[-1] = O0xBAD;
Pointers: int* p;
P [0]
p = &al[0]; (2]
* — .
P OxA; A14]

array indexing = address arithmetic
(both scaled by the size of the type)

pll] = 0xB;
*(pt+l) = 0xB;

P
p=p t+ 2;

L03: Memory & Data Il

CSE351, Autumn 2024

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe addressof a[0] plus i times
the element size in bytes

Ox0 Ox1 Ox2 0x3 0x4 0Ox5 Ox6 Ox7

Ox8 O0x9 OxA OxB OxC O0OxD OxE OxF
0x00 IR
0x08 ' 1 1 IADI!OB'! 00! 00
0x10 | OA. 00 1 00 ' 00 | OB ! 00 ! 00 ! 00
0x18 N L L
0x20 AN 5F 01! 00! 00
0x28 |AD'OB'™QQ !00! ' 1 1
0x30 LN
0x38 RN
0x40 | 10 1 00 ! 00 ' 00O® 00 ! 00 ! 00 ! 00
O I T A A

23

YA UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int a[6];

Indexing: al[0] = 0x015f;
ald] = al0];
No bounds a[6] = 0xBAD;
checking: al[-1] = O0xBAD;
Pointers: int* p;
P 0]
p = &al[0]; (2]
*1y — .
P OxA; A14]
array indexing = address arithmetic
(both scaled by the size of the type)
p[l] = 0xB;
*(pt+l) = 0xB;
p
p=p t+ 2
*p = all] + 1;

L03: Memory & Data Il

CSE351, Autumn 2024

Arrays are adjacent locations in memory
storing the same type of data object

a (array name) returns the array’s address

&a[i] isthe addressof a[0] plus i times
the element size in bytes

OxO Ox1 Ox2 Ox3 O0x4 Ox5 Ox6 O0Ox7

Ox8 O0x9 OxA OxB OxC OxD OxE OxF
0x00 IR
0x08 ' 1 1 IADI!OB!00!00
0x10 |OA 100! 00! 00| 0B 00! 0000
0x18 | OC_! 00 ! 00 ! 00 R
0x20 N D! 5F:01'!00!00
0x28 |AD'OB\NOO!00! ' 1 1
0x30 AN
0x38 LN
0x40 | 18 1 00 ! 00 ' 0000 ! 00 ! 00 ! 00
L I N A T

24

YA UNIVERSITY of WASHINGTON

L03: Memory & Data Il

CSE351, Autumn 2024

Question: The variable values after Line 3 executes are
shown on the right. What are they after Line 57

= \/ote in Ed Lessons

oY U x W DN

Data Address

(hex) (hex)
5 0x100
10

100

void main () {
int a[] = {0x5,0x10};
int* p = a;
P =p + 1;
*p = *p + 1;
}
P a[0] al1l]
(A) Ox101 0Ox5 Ox11
(B) Ux104 0Ox5 Ox11
(C)
(D) 0104 0Ox6 010

25

YA UNIVERSITY of WASHINGTON

Representing strings (Review)

L03: Memory & Data Il

CSE351, Autumn 2024

+» C-style string stored as an array of bytes (char¥*)

= No “String” keyword, unlike Java

" Elements are one-byte ASCII codes for each character

32
33
34

35
36

37
38
39
40
41
42
43
44
45
46
47

space
!
#
$
%
&

’

/

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

O OO NOOUVIAAWNERO

- V 1] N = .o

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

O2rX==—IOTMMmMOO®>N

80
81
82

83
84

85
86
87
88
89
90
91
92
93
94
95

S ~—~ N < XS < CHWXIIPQO D

96
97
98

99
100

101
102
103
104
105
106
107
108
109
110
111

S 3 = X = = 0@ - 0D Q0 T QO

o

112
113
114

115
116

117
118
119
120
121
122
123
124
125
126
127

=~ —~ N X ST € C + 0 = O T

del

ASCIl: American Standard Code for Information Interchange

26

YA UNIVERSITY of WASHINGTON

L03: Memory & Data Il

Representing strings (Review)

CSE351, Autumn 2024

+» C-style string stored as an array of bytes (char¥*)

= No “String” keyword, unlike Java

" Elements are one-byte ASCII codes for each character

= Last character followed by a0 byte ('\0"')
(a.k.a. "null character™)

Decimal:
Hex:
Text:

83 [116| 97 | 121| 32 | 115(97 1102|101} 32 | 87 | 65 0
Ox53| Ox74| Ox61| 0x79]| Ox20| Ox73| Ox61]| Ox66| Ox65| Ox20| Ox57]| Ox41| Ox00
ISI ltl lal lyl | | ISI lal lfl lel | | l\/\/l IAI l\@l

" "Stay safe WA" isa 13 byte string

27

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

. . C (char =1 byte)
Endianness and Strings

char s[6] = "12345"; 1A32,x86-64 SPARC
(little-endian) (big-endian)
String literal
0x00f 31 [1 31 |Ox00 '1'
/0x01 32 | 32 Joxo1 '2°
0x31 = 49 decimal = ASCII 1’ 0x02| 33 F [33 |0x02 '3
0x03| 34 | 1 34 |0x03 '4'
0x04| 35 [* 35 |[Ox04 'S5
0x05] 00 |« » 00 |Ox05 "\O'

+~ Byte ordering (endianness) is not an issue for 1-byte
values

" The whole array does not constitute a single value
" |ndividual elements are values; chars are single bytes

28

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Examining Data Representations

+» Code to print byte representation of data

®" Treat any data type as a byte array by casting its address to
char*

= Chas unchecked casts !l DANGER !!

void show_bytes(charx start, int len) {
int 7;
for (i = 0; 1 < len; i++)
printf ("%p\tOx%.2hhX\n", starf:), x(start+i));

printf("\n"); Format string pointer arfhmefri sn
+ charX

+ printt legend:
= Special characters: \t =Tab, \n = newline

" Format specifiers: %p = pointer,
%.2hhx = 1 byte (hh) in hex (x), padding to 2 digits (.2)

29

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Examining Data Representations

+» Code to print byte representation of data

®" Treat any data type as a byte array by casting its address to
char*

= Chas unchecked casts !l DANGER !!

void show_bytes(charx start, int len) {
int 7;
for (i = 0; 1 < len; i++)
printf ("%p\toOx%.2hhX\n", start+i, *(start+i));
printf("\n");
+

void show_int(int x) { L—tF
show_bytes((char x) é;} sizeof (int));
/\ —~—
} } T by“‘e S
L W Cast "
C‘hmﬂ" aS)

30

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

show_bytes Execution Example

int x = 123456; // Ox00 01 E2 40
printf("int x = %d;\n", x);

show_int(x) ; // show_bytes((char x) &x,
sizeof(int));

% Result (Linux x86-64):

" Note: The addresses will change on each run (try it!), but
fall in same general range

int x = 123456;
Ox7fffb245549¢

Ox7fffb245549d
Ox7Tffb245549¢
Ox7TfTb2455491

31

YA UNIVERSITY of WASHINGTON L03: Memory & Data Il CSE351, Autumn 2024

Summary

*

Assignment in C results in value being put in memory
location

’0

Pointer is a C representation of a data address
= & =“address of” operator

= * = “value at address” or “dereference” operator

00

Pointer arithmetic scales by size of target type
"= Convenient when accessing array-like structures in memory

" Be careful when using — particularly when casting variables

+ Arrays are adjacent locations in memory storing the
same type of data object

= Strings are null-terminated arrays of characters (ASCI|)

32

	Memory, Data, & Addressing II�CSE 351 Autumn 2024
	Relevant Course Information
	Late Days
	Memory, Data, and Addressing
	Reading Review
	Review Questions
	Addresses and Pointers in C
	Pointer Operators
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Assignment in C
	Pointer Arithmetic
	Assignment in C
	Assignment in C
	Arrays in C
	Arrays in C
	Arrays in C
	Arrays in C
	Arrays in C
	Arrays in C
	Question: The variable values after Line 3 executes are shown on the right. What are they after Line 5?�
	Representing strings (Review)
	Representing strings (Review)
	Endianness and Strings
	Examining Data Representations
	Examining Data Representations
	show_bytes Execution Example
	Summary

