
CSE351, Autumn 2024L02: Memory & Data I

Memory, Data, & Addressing I
CSE 351 Autumn 2024

Instructor:
Ruth Anderson
Teaching Assistants:
Alexandra Michael
Connie Chen
Chloe Fong
Chendur Jayavelu
Joshua Tan
Nikolas McNamee
Nahush Shrivatsa
Naama Amiel
Neela Kausik
Renee Ruan
Rubee Zhao
Samantha Dreussi
Sean Siddens
Waleed Yagoub

http://xkcd.com/953/

http://xkcd.com/953/

CSE351, Autumn 2024L02: Memory & Data I

Relevant Course Information
 Pre-Course Survey and HW0 due tonight @ 11:59 pm
 HW1 due Monday (9/30) @ 11:59 pm
 Lab 0 due Monday (9/30) @ 11:59 pm
 This lab is exploratory and looks like a hw; the other labs will look a lot

different (involve writing code etc.)
 Don’t worry if everything in Lab 0 doesn’t make perfect sense right now!

We will cover all of these topics in more detail later in the course.
 Lab 0 is about getting you used to modifying C code and running it to see

what the outcome is – a powerful tool for understanding the concepts in
this course!

 Readings should be completed by 11am on day of lecture
 Lecture activities should be completed by 11am of NEXT lecture

2

CSE351, Autumn 2024L02: Memory & Data I

In-Person Office Hours

 Many are in the
CSE/Allen Center
breakouts
 Up the stairs in the CSE

Atrium (Allen Center,
not Gates)
 2nd, 3rd , 4th, 5th floors

 At the top of the stairs,
the open area
with the whiteboard
wall is a breakout!

3

CSE351, Autumn 2024L02: Memory & Data I

Memory, Data, and Addressing

 Hardware - High Level Overview
 Representing information as bits and bytes
 Memory is a byte-addressable array
 Machine “word” size = address size = register size

 Organizing and addressing data in memory
 Endianness – ordering bytes in memory

 Manipulating data in memory using C
 Boolean algebra and bit-level manipulations

4

CSE351, Autumn 2024L02: Memory & Data I

Hardware: Physical View

5

CPU
(empty slot)

USB…

I/O
controller

Storage connections
Memory

CSE351, Autumn 2024L02: Memory & Data I

Hardware: Logical View

6

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Autumn 2024L02: Memory & Data I

Hardware: 351 View (version 0)

 The CPU executes instructions
 Memory stores data

 Binary encoding!
 Instructions are just data

7

Memory

CPU

?

How are data
and instructions

represented?

CSE351, Autumn 2024L02: Memory & Data I

Hardware: 351 View (version 0)

 To execute an instruction, the CPU must:
1) Fetch the instruction
2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation
4) (if applicable) Write the result back to memory

8

Memory

CPU

?
data

instructions

CSE351, Autumn 2024L02: Memory & Data I

Hardware: 351 View (version 1)

9

Memory

CPU

take 469

registers

i-cache

data

instructions

 More CPU details:
 Instructions are held temporarily in the instruction cache
 Other data are held temporarily in registers

 Instruction fetching is hardware-controlled
 Data movement is programmer-controlled (assembly)

CSE351, Autumn 2024L02: Memory & Data I

Hardware: 351 View (version 1)

10

Memory

CPU

take 469

registers

i-cache

data

instructions

 We will start by learning about Memory

How does a
program find its
data in memory?

CSE351, Autumn 2024L02: Memory & Data I

Review Questions

 By looking at the bits stored in memory, I can tell
what a particular 16 bytes is being used to represent.
A. True B. False

 We can fetch a piece of data from memory as long as
we have its address or its known size.
A. True B. False

 Which of the following bytes have a most-significant
bit (MSB) of 1?
A. 0x3F B. 0xA0 C. 0xCA D. 0xD

11

CSE351, Autumn 2024L02: Memory & Data I

Fixed-Length Binary (Review)

 Because storage is finite in reality, everything is
stored as “fixed” length
 Data is moved and manipulated in fixed-length chunks
 Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)
 Leading zeros now must be included up to “fill out” the fixed

length

 Example: the “eight-bit” representation of the
number 4 is 0b00000100

12

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE351, Autumn 2024L02: Memory & Data I

Binary Encoding

 With N binary digits, how many “things” can you
represent?
 Need N binary digits to represent 𝑛𝑛 things, where 2N ≥ 𝑛𝑛
 Example: 5 binary digits for alphabet because 25 = 32 > 26

 A binary digit is known as a bit
 A group of 4 bits (1 hex digit) is called a nibble
 A group of 8 bits (2 hex digits) is called a byte
 1 bit → 2 things, 1 nibble → 16 things, 1 byte → 256 things

13

CSE351, Autumn 2024L02: Memory & Data I

An Address Refers to a Byte of Memory

 Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
 Each address is just a number represented in fixed-length binary

 Programs refer to bytes in memory by their addresses
 Domain of possible addresses = address space
 We can store addresses as data to “remember” where other data is in

memory

 But not all values fit in a single byte… (e.g. 351)
 Many operations actually use multi-byte values

14

• • •

CSE351, Autumn 2024L02: Memory & Data I

Machine “Words” (Review)

 Instructions encoded into machine code (0’s and 1’s)
 Historically (still true in some assembly languages), all

instructions were exactly the size of a word

 We have chosen to tie word size to address size/width
 word size = address size = register size
 word size = 𝑤𝑤 bits → 2𝑤𝑤 addresses

 Current x86 systems use 64-bit (8-byte) words
 Potential address space: 𝟐𝟐𝟔𝟔𝟔𝟔 addresses

264 bytes ≈ 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)
 Actual physical address space: 48 bits

15

CSE351, Autumn 2024L02: Memory & Data I

Data Representations

 Sizes of data types (in bytes)

16To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long long 8 8

long double 8 16
(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Autumn 2024L02: Memory & Data I

Questions about Multibyte Data

 1) What do we use as the address of this data object?
 2) Are there any rules about where you can place

multibyte data in memory?

17

CSE351, Autumn 2024L02: Memory & Data I

Address of Multibyte Data

 Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of chunks
of fixed-sized data instead
 Addresses of successive chunks

differ by data size
 Which byte’s address should we

use for each word?

 The address of any chunk of
memory is given by the address
of the first byte
 To specify a chunk of memory,

need both its address and its size
18

32-bit
data

64-bit
data

Bytes

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Autumn 2024L02: Memory & Data I

Alignment of Multibyte Data

 The address of a chunk of
memory is considered aligned
if its address is a multiple of its
size
 View memory as a series of

consecutive chunks of this
particular size and see if your
chunk doesn’t cross a boundary

190x0F

32-bit
data

Bytes64-bit
data

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E

Addr.
(hex)

CSE351, Autumn 2024L02: Memory & Data I

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:
 In this type of picture, each row is composed of 8 bytes
 Each cell is a byte
 An aligned, 64-bit

chunk of data will
fit on one row

20

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

CSE351, Autumn 2024L02: Memory & Data I

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:
 In this type of picture, each row is composed of 8 bytes
 Each cell is a byte
 An aligned, 64-bit

chunk of data will
fit on one row

21

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

CSE351, Autumn 2024L02: Memory & Data I

Addresses and Pointers (step 1)

 An address refers to a location in memory
 A pointer is a data object that holds an address
 Address can point to any type of data

 Value 504 stored at
address 0x08
 50410 = 1F816

= 0x 00 ... 00 01 F8

 Pointer stored at
0x38 points to
address 0x08

22

64-bit example
(pointers are 64-bits wide)

big-endian

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

CSE351, Autumn 2024L02: Memory & Data I

Addresses and Pointers (step 2)

 An address refers to a location in memory
 A pointer is a data object that holds an address
 Address can point to any type of data

 Pointer stored at
0x48 points to
address 0x38
 Pointer to a pointer!

 Is the data stored
at 0x08 a pointer?
 Could be, depending

on how you use it
23

64-bit example
(pointers are 64-bits wide)

big-endian

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

CSE351, Autumn 2024L02: Memory & Data I

Byte Ordering (Review)

 How should bytes within a word be ordered in
memory?
 Want to keep consecutive bytes in consecutive addresses
 Example: store the 4-byte (32-bit) int:
0x A1 B2 C3 D4

 By convention, ordering of bytes called endianness
 The two options are big-endian and little-endian

• In which address does the least significant byte go?
• Based on Gulliver’s Travels: tribes cut eggs on different sides

(big, little)

24

CSE351, Autumn 2024L02: Memory & Data I

Byte Ordering

 Big-endian (SPARC, z/Architecture)
 Least significant byte has highest address

 Little-endian (x86, x86-64)
 Least significant byte has lowest address

 Bi-endian (ARM, PowerPC)
 Endianness can be specified as big or little

 Example: 4-byte data 0xA1B2C3D4 at address 0x100

25

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

CSE351, Autumn 2024L02: Memory & Data I

Byte Ordering (solution)

 Big-endian (SPARC, z/Architecture)
 Least significant byte has highest address

 Little-endian (x86, x86-64)
 Least significant byte has lowest address

 Bi-endian (ARM, PowerPC)
 Endianness can be specified as big or little

 Example: 4-byte data 0xA1B2C3D4 at address 0x100

26

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

A1 B2 C3 D4

D4 C3 B2 A1

CSE351, Autumn 2024L02: Memory & Data I

Polling Question

 We store the value 0x 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

 What is the byte of data stored at address 0x104?
 Vote in Ed Lessons

A. 0x04
B. 0x40
C. 0x01
D. 0x10
E. We’re lost…

27

CSE351, Autumn 2024L02: Memory & Data I

Endianness

 Endianness only applies to memory storage
 Often programmer can ignore endianness because it

is handled for you
 Bytes wired into correct place when reading or storing from

memory (hardware)

 Compiler and assembler generate correct behavior (software)

 Endianness still shows up:
 Logical issues: accessing different amount of data than how

you stored it (e.g. store int, access byte as a char)
 Need to know exact values to debug memory errors
 Manual translation to and from machine code (in 351)

28

CSE351, Autumn 2024L02: Memory & Data I

Summary

 Memory is a long, byte-addressed array
 Word size bounds the size of the address space and memory
 Different data types use different number of bytes
 Address of chunk of memory given by address of lowest byte

in chunk
 Object of 𝐾𝐾 bytes is aligned if it has an address that is a

multiple of 𝐾𝐾
 Pointers are data objects that hold addresses
 Endianness determines memory storage order for

multi-byte data

29

	Memory, Data, & Addressing I�CSE 351 Autumn 2024
	Relevant Course Information
	In-Person Office Hours
	Memory, Data, and Addressing
	Hardware: Physical View
	Hardware: Logical View
	Hardware: 351 View (version 0)
	Hardware: 351 View (version 0)
	Hardware: 351 View (version 1)
	Hardware: 351 View (version 1)
	Review Questions
	Fixed-Length Binary (Review)
	Binary Encoding
	An Address Refers to a Byte of Memory
	Machine “Words” (Review)
	Data Representations
	Questions about Multibyte Data
	Address of Multibyte Data
	Alignment of Multibyte Data
	A Picture of Memory (64-bit view)
	A Picture of Memory (64-bit view)
	Addresses and Pointers (step 1)
	Addresses and Pointers (step 2)
	Byte Ordering (Review)
	Byte Ordering
	Byte Ordering (solution)
	Polling Question
	Endianness
	Summary

