Unit 1: Pointers, Memory, and Number Representation

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of memory (values in hex) is shown below:

```
Word Addr  +0  +1  +2  +3  +4  +5  +6  +7
0x30       93  DC  B8  7A  3B  1A  B2  0C
0x38       D3  A6  A4  71  E2  23  9C  59
0x40       60  15  68  76  D3  E6  25  BE
0x48       A4  A5  DB  BE  56  AF  D1  2E
0x50       17  1F  95  C4  24  63  D2  62
0x58       B1  7A  44  58  C7  C4  03  81
```

int* ip = 0x4C;
short* sp = 0x36;

(A) Using the values shown above, fill in the C type and hex value for each of the following C expressions.

<table>
<thead>
<tr>
<th>C Expression</th>
<th>C Type</th>
<th>Hex Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip + 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp[-1] + 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((char)ip - 1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(B) Let the variable signed char x be located at the address 0x44 in the memory diagram above.

(i) What is the value of x in decimal?

(ii) For each of the following expressions, indicate whether it will result in a positive, negative, or zero result.

- x << 2 Positive Negative Zero
- ! (x ^ 0xD4) Positive Negative Zero
- x >> 1 Positive Negative Zero

(iii) Find the smallest 8-bit unsigned numeral c (answer in hex) such that c + x causes unsigned over but not signed overflow in 8 bits.