
SID: __1234567__ 

7 
 

Question F6:  Structs  [10 pts] 

For this question, assume a 64-bit machine and the following C struct definition. 

typedef struct {   K: 
  char* title;     8  // title (e.g. "HW SW INTERFACE") 
  char  dept[3];   1  // dept (e.g. "CSE") 
  short num;       2  // course number (e.g. 351) 
  int   enrolled;  4  // students enrolled 
} course;   Kmax = 8 

(A) How much memory, in bytes, does an instance of course use?  How many of those bytes are 
internal fragmentation and external fragmentation?  [6 pt] 

sizeof(course) Internal External 

24 bytes 3 bytes 4 bytes 

Alignment requirements listed above in red next to the struct fields.  A course instance: 

title dept  num  enrolled  
0 8 11 12 14 16 20 24 

The unused bytes around num count as internal fragmentation, the unused bytes after enrolled 
count as external fragmentation. 

(B) Assume that an instance course c is allocated on the stack and an array char ar[] is 
allocated 40 bytes below c (i.e. &ar + 0x28 == (char*)&c).  Fill in the blanks below with 
the new ASCII characters stored in c.dept after the following loop is executed.  Hint: recall that 
the values 0x30 to 0x39 correspond to the ASCII characters '0' to '9'.  [4 pt] 

for (int i = 0; i < 52; ++i) { 

   ar[i] = i; 

} 

 
Starting from the beginning of ar, we store the values 0 to 39 
before we reach the struct c.  The values 40 to 47 overwrite the 
bytes of c.title (address 0x2f2e2d2c2b2a2928, assuming 
little-endian).  c.dept then gets overwritten with the values 48 
= 0x30 = '0', 49 = 0x31 = '1', and 50 = 0x32 = '2'. 

c.dept[0]: '0' 

c.dept[1]: '1' 

c.dept[2]: '2' 

 

  



8 
 

Question F7:  Caching  [19 pts] 

We have 256 KiB of RAM and a 4-KiB L1 data cache that is 2-way set associative with 32-byte blocks 
and random replacement, write-back, and write allocate policies. 

(A) Calculate the TIO address breakdown:  [3 pt] 

Tag bits Index bits Offset bits 

7 6 5 

18 address bits.  logଶ 32 = 5 offset bits.  212-B cache = 128 blocks.  2 blocks/set → 64 = 26 sets. 

(B) The code snippet below accesses two arrays of doubles.  Assuming i is stored in a register and 
the cache starts cold, give the memory access pattern (read or write to which elements/addresses) 
and compute the miss rate.  [6 pt] 

#define SIZE 128 
double src[SIZE];    // &src = 0x08000 (physical addr) 
double dst[SIZE];    // &dst = 0x0E000 (physical addr) 
for (int i = 0; i < SIZE; i += 1) { 
    dst[i] = src[i]; 
    src[i] = i; 
} 

 Per Iteration: 
(circle) → 
(fill in) → 

Access 1: 
R / W to 

src[i] 

Access 2: 
R / W to 

dst[i] 

Access 3: 
R / W to 

src[i] 

src[i] and dst[i] map into the same set because their index fields 
match.  However, our cache is 2-way set associative, so they do not conflict. 
Each block holds 32 B = 4 doubles, so for the 4 iterations in the same cache 
block, we get MMH|HHH|HHH|HHH for a miss rate of 2/12 = 1/6. 

Code Miss Rate: 
 

__1/6__ 

(C) For each of the proposed (independent) changes, draw ↑ for “increased”,  ― for “no change”, or  
↓ for “decreased” to indicate the effect on the miss rate from Part B for the code above:  [8 pt] 

Use float instead __↓__  Double the cache size __―__ 

Half the associativity __↑__  No-write allocate __↑__ 

Using floats means we access each block twice as much (MR = 1/12).  Doubling cache size 
doubles the number of sets, but src[i] and dst[i] still map to the same set.  Direct-mapped 
would cause src[i] and dst[i] to generate conflict misses.  No-write allocate means we don’t 
bring in the block for dst into the cache on access 2, so future access 2s continue to be Misses. 

(D) Assume it takes 160 ns to get a block of data from main memory.  If our L1 data cache has a hit 
time of 5 ns and a miss rate of 5%, what is our average memory access time (AMAT)?  [2 pt] 

AMAT = HT + MR×MP = 5 ns + 0.05 × 160 ns = 5 + 8 ns 13 ns 



SID: __1234567__ 

9 
 

Question F8:  Processes  [18 pts] 

(A) The following function prints out four numbers.  In the following blanks, list three possible 
outcomes:  [6 pt] 

The 7 possible outcomes: 
  1) 5, 5, 6, 7, 

  2) 5, 5, 7, 6, 

  3) 5, 6, 5, 7, 

  4) 5, 6, 7, 5, 

  5) 6, 5, 5, 7, 

  6) 6, 5, 7, 5, 

  7) 6, 7, 5, 5, 
 

 

(B) For the following examples of exception causes, write “S” for synchronous or “A” for asynchronous 
from the perspective of the user process.  [4 pt] 

System call __S__ Divide by zero  __S__ 

Segmentation fault __S__ Key pressed __A__ 

Everything but a key press is caused by an assembly instruction within your program. 

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the 
following would be different when context switching to a different process?  [4 pt] 

Process ID __A__ Program __S__ PTBR __A__ Condition 
Codes 

__S__ 

Every process has a unique ID and its own page table, but could be running different instances of 
the same program.  Each process has its own execution state (including the condition codes), but 
it is possible that the condition codes have the same values at the instance we switch. 

(D) Is the following statement True or False?  Provide a brief justification: a single process can 
execute multiple programs simultaneously.  [4 pt] 

Circle one: True  /  False 
Justification: One process is dedicated to running one program at a time. The program 
defines the instructions, initial memory state, etc. of the process, so two programs can’t exist 
within the same process at once. 

 

n=5 
fork 

print 

print print 
Process 
Diagram: 

n=6 
wait 

n=7 print 

void concurrent(void) { 
   int n = 5; 
   if (fork()) { 
      n++; 
      if (fork()) { 
        n++; 
        wait(); 
      } 
      printf("%d, ", n); 
      exit(0); 
   } else { 
      printf("%d, ", n); 
   } 
   printf("%d, ", n); 
   exit(0); 
} 



10 
 

Question F9:  Virtual Memory  [14 pts] 

Our system has the following setup: 
• 15-bit virtual addresses and 2 KiB of RAM with 256-byte pages 
• A 4-entry fully-associative TLB with LRU replacement 
• A PTE contains bits for valid (V), dirty (D), read (R), write (W), and execute (X) 

(A) Compute the following values:  [8 pt] 

page offset width 8 bits  # of TLB sets 1 set 

# of virtual pages 27 pages  minimum width of PTBR  11 bits 

Page offset is logଶ 256 = 8 bits wide.  # of virtual pages is 2n-p = 27.  The TLB is fully-
associative, so only has 1 set.  The page table lives in physical memory, so the PTBR must hold 
its physical address, which need to be at least 11 bits wide to address all 2 KiB of RAM. 

(B) Assuming that the TLB is in the state shown (permission bits: 1 = allowed, 0 = disallowed), give 
example addresses that will fulfill the following scenarios:  [6 pt] 

Find the desired entry in the TLB.  Because the 
TLB is fully-associative, the TLB tag is exactly the 
virtual page number (VPN).  Any page offset 
within this page will access that TLB entry. 
 

 

A value in %rip that causes a TLB Hit and no exception: 
Want TLB entry with V=1, X=1 → VPN 0x04. 

0x0400-0x04FF 

A write address that causes a TLB Hit and segmentation fault: 
Want TLB entry with V=1, W=0 → VPN 0x20. 

0x2000-0x20FF 

Grading notes: 
• Answers without leading zeros accepted. 

  

TLBT PPN Valid D R W X 
0x20 0xc 1 0 1 0 0 

0x7f 0xa 1 0 1 1 0 

0x7e 0xf 1 0 1 1 0 

0x04 0xe 1 0 1 1 1 



 6 of 11  

4. Memory Allocation (11 points total) 
 
1 #include <stdlib.h> 
2 float pi = 3.14; 
3 
4 int main(int argc, char *argv[]) { 
5   int year = 2019; 
6   int* happy = malloc(sizeof(int*)); 
7   happy++; 
8   free(happy); 
9   return 0; 
10 } 
 

a) [3 pts] Consider the C code shown above.  Assume that the malloc call succeeds and happy 
and year are stored in memory (not in a register).  Fill in the following blanks with “<” or “>” 
or “UNKNOWN” to compare the values returned by the following expressions just before 
return 0. 

 
 &year ___>_____ &main 

 happy ___<_____ &happy 

&pi ___<______ happy 

 

b) [4 pts] The code above has two memory-related errors.  Use the line numbers in the code to 
describe what the errors are and where they occur. 

 

Error #1:  On line 6 we are requesting more memory than we need.  We should be requesting 
size of int (4 bytes), not size of int* (8 bytes).  Alternatively we could have meant to declare 
happy to be of type int** (a pointer to a pointer to an int) so that we would have needed 8 
bytes to hold a pointer to an int. 
 

Error #2: On line 8 we are calling free on a pointer that was not the one returned to us by 
malloc. In line 7 we are incrementing happy (a pointer to an int that was returned to us by 
malloc). 
 

c) [2 pts] (Not related to code at top of page) Give one advantage that next fit placement policy has 
over a first fit placement policy in an implicit free list implementation. 
 

Next fit searches the list starting where the previous search finished. This should often be 
faster than first fit because it avoids re-scanning unhelpful blocks.  First fit always starts 
searching at the beginning of the list.  In an implicit free list this is particularly bad because 
the “free” list actually contains all allocated blocks as well as free blocks. So starting from the 
beginning of the list is likely to traverse many allocated blocks each time. 
 

d) [2 pts] List two reasons why it would be hard to write a garbage collector for the C 
programming language. 

 
Reason #1: Pointers in C can point to a location other than the beginning of a block of 
memory on the heap.   
 
Reason #2: In C you can “hide” pointers e.g. by casting them to longs. 

  



Student ID:

5. (11 points) A Nice Hot Cup of Java

WolfBytes has gotten wind of this fancy new language called “Java” and has decide to re-write
their website using it. They’ve written two classes to store information about their CPUs:

class CPU {

float clockSpeed;

int cacheSize;

int cacheAssoc;

int getCores () {

return 1;

}

}

class MultiCoreCPU extends CPU {

int numberOfCores;

float [] coreSpeeds = new float [16];

int getCores () {

return numberOfCores;

}

float [] getCoreSpeeds () {

return coreSpeeds;

}

}

(a) (4 points) The vtable for CPU is shown below. Annotate the diagram with the changes
that we would need to make for the vtable of MultiCoreCPU.

Solution: getCores should point to code for MultiCoreCPU.getCores and there
should be a new entry at the end of the table for MultiCoreCPU.getCoreSpeeds

You may assume that the alignment for this JVM implementation is the same as C on x86-64,
and that fields are stored in memory in the order that they are declared.

(b) (2 points) How much space does an instance of CPU take up?

(b) 32B

(c) (3 points) How much space does an instance of MultiCoreCPU take up?

(c) 40B

(d) (2 points) Give an example of something that is allowed in C, but not in Java, because it
would prevent the garbage collector from working properly.

Solution: pointers to middle of structs/objects, casting pointers to other types, etc.

Page 6


