
Number Representation & Strings

A. What is the value of the signed char 0x9E in decimal?

-128 + 16 + 8 + 4 + 2 = -98

B. What is the value of the unsigned char 37 in binary?

0b00100101

C. If a = 0x2C, complete the bitwise C statement so that b = 0x1F.

b = a ^ 0x33

For the following problems we are working with a �loating point representation that follows
the same conventions as IEEE 754 except using 7 bits split into the following �ields:

Sign (1) Exponent (3) Mantissa (3)

D. What is the magnitude of the bias of this new representation?

23 - 1 - 1 = 3

E. What is the decimal value encoded by 0b1110101 in this representation?

S = 1, E = 0b110 = 6, M = 0b101
Value = (-1)1 x 1.1012 x 26 - 3 = -1.101 x 23 = -11012 = -13

F. What value will be read after we try to store -18 in this representation? (Circle one)

-16 -NaN -∞ -18

For the following problem, assume we are working with C strings encoded in ASCII. Consider
the declaration:

char str[] = “Hello!”;

G. What will be stored in the array str? (Bytes given in hex)

48 65 6C 6C 6F 21 0

Pointers & Memory

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of
memory (values in hex) is shown below:

char* charP = 0xD;
short* shortP = 0x1E;

Word
Addr

+0 +1 +2 +3 +4 +5 +6 +7

0x00 20 F6 EF EA A2 5E 9F 1A

0x08 A2 D0 4F C4 A0 0C F7 27

0x10 B8 BD 1A CA 35 95 CB 80

0x18 84 3F 02 4F 8E F3 F6 E5

0x20 CD 4A F6 48 1A 6F 7E 63

A. Using the values shown above, ill in the C type and hex value for each of the following C
expressions. Leading zeros are not required for the hex values.

C Expression C Type Hex Value

*(charP + 6) char 0xCA

(int**)shortP - 2 int** 0xE

B. For the following snippet of C code, draw out a box-and-arrow diagram for the allocated
memory.

int x = 351, y = 332;
int *p = &x;
int **q = &p;
*q = &y;
*(*q) = x;

C & Assembly

Answer the questions below about the following x86-64 assembly function:

mystery:

jmp .L2 # Line 1

.L4: addq $1, %rdi # Line 2

movb %al, (%rsi) # Line 3

leaq 1(%rsi), %rsi # Line 4

.L2: movzbl (%rdi), %eax # Line 5

testb %al, %al # Line 6

je .L3 # Line 7

cmpb %dl, %al # Line 8

jne .L4 # Line 9

.L3: movb $0, (%rsi) # Line 10

retq # Line 11

A. What variable type would %rdi be in the corresponding C program?

char*, unsigned char* is also acceptable due to zero-extension.

Line 5: we read a byte out of memory by dereferencing the value in %rdi

B. What variable type would the third argument be in the corresponding C program?

char

Line 8: %dl (lowest byte of %rdx) is compared to the byte read out of memory.

C. This function uses a while loop. Fill in the two conditionals below, using register names as
variable names (no declarations necessary).

al
al != 0
*rdi al != dl

while(*rdi != 0 && *rdi != dl)

Conditional 1 is from Lines 6-7, which exit loop if %al = 0
Conditional 2 is from Lines 8-9, which loop back if %al - %dl != 0

D. Taking the variable types into account, describe at a high level what the purpose of Line 10
is (not just what it does mechanically).

Adds a null terminator (char with value 0) to the end of *rsi (the destination string).

E. Describe at a high level what you think this function accomplishes (not line-by-line).

It copies all of the characters from a source string (in %rdi) to a destination string (In %rsi)
until it sees a speci�ied character (in %dl) or the end of the source string. The destination string
is then null-terminated.

Procedures & The Stack

The recursive function count_nz counts the number of non-zero elements in an int array.
Example: if int a[] = {-1,0,1,255}, then count_nz(a,4) returns 3. The function and its
x86-64 disassembly are shown below:

int count_nz(int* ar, int num) {
if (num > 0)

return !!(*ar) + count_nz(ar + 1,num - 1);
return 0;

}

0000000000400536 <count_nz>:

400536: 85 f6 testl %esi,%esi

400538: 7e 1b jle 400555 <count_nz+0x1f>

40053a: 53 pushq %rbx

40053b: 8b 1f movl (%rdi),%ebx

40053d: 83 ee 01 subl $0x1,%esi

400540: 48 83 c7 04 addq $0x4,%rdi

400544: e8 ed ff ff ff callq 400536 <count_nz>

400549: 85 db testl %ebx,%ebx

40054b: 0f 95 c2 setne %dl

40054e: 0f b6 d2 movzbl %dl,%edx

400551: 01 d0 addl %edx,%eax

400553: eb 06 jmp 40055b <count_nz+0x25>

400555: b8 00 00 00 00 movl $0x0,%eax

40055a: c3 retq

40055b: 5b popq %rbx

40055c: c3 retq

A. How much space (in bytes) does this function take up in our �inal executable?

39 B. Count all bytes (middle columns) or subtract the address of next instruction (0x40055d)
from 0x400536.

B. The compiler automatically creates labels it needs in assembly code. How many labels are used in
count_nz (including the procedure itself)?

3. The addresses 0x400536, 0x400555 (BaseCase:),0x40055b (Exit:)

C. In terms of the C function, what value is being saved on the stack?

*ar. movl instruction at 0x40053b puts *ar into %rbx, which is pushed onto the stack by the
pushq instruction at 0x40053a.

D. What is the return address to count_nz that gets stored on the stack (in hex)?

0x400549. The address of the instruction after call.

E. Assume main calls count_nz(a,5) with an appropriately-sized array and then prints the
result using printf. Starting with (including) main, answer the following in the number of
stack frames.

Total
created: 8

Max
depth: 7

main→count_nz(a,5)→(a+1,4)→(a+2,3)→(a+3,2)→(a+4,1)→(a+5,0)→printf

F. Assume main calls count_nz(a,6) with int a[] = {3,5,1,4,1,0}. We �ind that the
return address to main is stored on the stack at address 0x7fffeca3f748. What data will
be stored on the stack at address 0x7fffeca3f720?

0x7fffeca3f748 <ret addr to main>

0x7fffeca3f740 <original rbx>

0x7fffeca3f738 0x400549 <ret addr>

0x7fffeca3f730 0x3 <*a>

0x7fffeca3f728 0x400549 <ret addr>

0x7fffeca3f720 0x5 <*(a+1)>

G. A similar function count_z that counts the number of zero elements in an array is made by
making a single change to count_nz. What is the address of the changed assembly
instruction?

0x40054b. Changing the setne to a sete changes the double bang in the C code to a single bang
and counts the zero elements instead.

Design Questions

A. What values can S take in an x86-64 memory operand? Brie�ly describe why these choices are
useful/important.

Values: 1, 2, 4, 8

Importance: These values represent the different scaling factors used in pointer
arithmetic based on the data type sizes.

B. Until very recently (Java 8/9), Java did not support unsigned integer data types. Name one
advantage and one disadvantage to this decision to omit unsigned.

Advantage: Some possible answers:
● Less confusing/more consistent arithmetic interpretations for the programmer
● Fewer cases of implicit casting
● Fewer data types to worry about

Disadvantage: Some possible answers:
● Need to use larger data widths for numbers in the range (TMax, UMax] for a given

width
● More dif�icult to do unsigned comparisons
● More dif�icult to do zero-extension

C. Condition codes are part of the processor/CPU state. Would our instruction set architecture (ISA)
still work if we got rid of the condition codes? Brie�ly explain.

Circle one: Yes No

Explanation: Our jump and set instructions, which rely on the values of the condition
codes, would no longer work. Without jump instructions, we couldn’t implement most of
our program’s control �low.

