
Number Representation & Strings

A. What is the value of the signed char 0x9E in decimal?

B. What is the value of the unsigned char 37 in binary?

C. If a = 0x2C, complete the bitwise C statement so that b = 0x1F.

b = a____0x______

For the following problems we are working with a floating point representation that follows
the same conventions as IEEE 754 except using 7 bits split into the following fields:

Sign (1) Exponent (3) Mantissa (3)

D. What is the magnitude of the bias of this new representation?

E. What is the decimal value encoded by 0b1110101 in this representation?

F. What value will be read after we try to store -18 in this representation? (Circle one)

-16 -NaN -∞ -18

For the following problem, assume we are working with C strings encoded in ASCII. Consider
the declaration:

char str[] = “Hello!”;

G. What will be stored in the array str?

Pointers & Memory

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of
memory (values in hex) is shown below:

char* charP = 0xD;
short* shortP = 0x1E;

Word
Addr

+0 +1 +2 +3 +4 +5 +6 +7

0x00 20 F6 EF EA A2 5E 9F 1A

0x08 A2 D0 4F C4 A0 0C F7 27

0x10 B8 BD 1A CA 35 95 CB 80

0x18 84 3F 02 4F 8E F3 F6 E5

0x20 CD 4A F6 48 1A 6F 7E 63

A. Using the values shown above, ill in the C type and hex value for each of the following C
expressions. Leading zeros are not required for the hex values.

C Expression C Type Hex Value

*(charP + 6)

(int**)shortP - 2

B. For the following snippet of C code, draw out a box-and-arrow diagram for the allocated
memory.

int x = 351, y = 332;
int *p = &x;
int **q = &p;
*q = &y;
*(*q) = x;

C & Assembly

Answer the questions below about the following x86-64 assembly function:

mystery:

jmp .L2 # Line 1

.L4: addq $1, %rdi # Line 2

movb %al, (%rsi) # Line 3

leaq 1(%rsi), %rsi # Line 4

.L2: movzbl (%rdi), %eax # Line 5

testb %al, %al # Line 6

je .L3 # Line 7

cmpb %dl, %al # Line 8

jne .L4 # Line 9

.L3: movb $0, (%rsi) # Line 10

retq # Line 11

A. What variable type would %rdi be in the corresponding C program?

B. What variable type would the third argument be in the corresponding C program?

C. This function uses a while loop. Fill in the two conditionals below, using register names as
variable names (no declarations necessary).

while (_________&&_________)

D. Taking the variable types into account, describe at a high level what the purpose of Line 10
is (not just what it does mechanically).

E. Describe at a high level what you think this function accomplishes (not line-by-line).

Procedures & The Stack

The recursive function count_nz counts the number of non-zero elements in an int array.
Example: if int a[] = {-1,0,1,255}, then count_nz(a,4) returns 3. The function and its
x86-64 disassembly are shown below:

int count_nz(int* ar, int num) {
if (num > 0)

return !!(*ar) + count_nz(ar + 1,num - 1);
return 0;

}

0000000000400536 <count_nz>:

400536: 85 f6 testl %esi,%esi

400538: 7e 1b jle 400555 <count_nz+0x1f>

40053a: 53 pushq %rbx

40053b: 8b 1f movl (%rdi),%ebx

40053d: 83 ee 01 subl $0x1,%esi

400540: 48 83 c7 04 addq $0x4,%rdi

400544: e8 ed ff ff ff callq 400536 <count_nz>

400549: 85 db testl %ebx,%ebx

40054b: 0f 95 c2 setne %dl

40054e: 0f b6 d2 movzbl %dl,%edx

400551: 01 d0 addl %edx,%eax

400553: eb 06 jmp 40055b <count_nz+0x25>

400555: b8 00 00 00 00 movl $0x0,%eax

40055a: c3 retq

40055b: 5b popq %rbx

40055c: c3 retq

A. How much space (in bytes) does this function take up in our final executable?

B. The compiler automatically creates labels it needs in assembly code. How many labels are used in
count_nz (including the procedure itself)?

C. In terms of the C function, what value is being saved on the stack?

D. What is the return address to count_nz that gets stored on the stack (in hex)?

E. Assume main calls count_nz(a,5) with an appropriately-sized array and then prints the
result using printf. Starting with (including) main, answer the following in the number of
stack frames.

Total
created:

Max
depth:

F. Assume main calls count_nz(a,6) with int a[] = {3,5,1,4,1,0}. We find that the
return address to main is stored on the stack at address 0x7fffeca3f748. What data will
be stored on the stack at address 0x7fffeca3f720?

0x7fffeca3f748 <ret addr to main>

0x7fffeca3f740

0x7fffeca3f738

0x7fffeca3f730

0x7fffeca3f728

0x7fffeca3f720

G. A similar function count_z that counts the number of zero elements in an array is made by
making a single change to count_nz. What is the address of the changed assembly
instruction?

Design Questions

A. What values can S take in an x86-64 memory operand? Briefly describe why these choices are
useful/important.

Values:

Importance:

B. Until very recently (Java 8/9), Java did not support unsigned integer data types. Name one
advantage and one disadvantage to this decision to omit unsigned.

Advantage:

Disadvantage:

C. Condition codes are part of the processor/CPU state. Would our instruction set architecture (ISA)
still work if we got rid of the condition codes? Briefly explain.

Circle one: Yes No

Explanation:

