WA UNIVERSITY of WASHINGTON

Course Wrap-

CSE 351 Spring 2022
Instructor:

Ruth Anderson

Diya Joy

Armin Magness
Jeffery Tian
Angela Xu

L29: Course Wrap-Up

Up

Teaching Assistants:
Melissa Birchfield
Kyrie Dowling

Jacob Christy
Ellis Haker

Anirudh Kumar

HEY, TURN ON THE. NELJS.

CANT. DOLINLOADING
A CD ONTO MY PHONE.

=N

o

* FX MY COMPUTERS

UHY?
/50T CAN USE. IT

OPERATING SYSTEM

\
ENOUGH THAT Z(AN
TEAMH ITTO TAKTO
My TV SCREEN.

)

!

Hamsa Shankar
Assaf Vayner
Effie Zheng

BUT THEN YoulL
BE ABLE TO
WATCH THE NEUS?

/

NO.
N

https://xkcd.com/1760/

CSE351, Spring 2022

Alena Dickmann
Maggie Jiang
Jim Limprasert
Dara Stotland
Tom Wu

DONT YOU HAVE A
COMPUTER SUENCE
DEGREE?

\

THAT JUST MEANS
T UNDERSIAND
HOLJ EVERYTHING

LENT SO [JRONG.

J

WA UNIVERSITY of WASHINGTON CSE351, Spring 2022

Relevant Course Information

+» Lab 5 (on Mem Alloc) due Friday 6/03
= Can be submitted at most ONE day late. (Sun 6/05)

®" Understanding the concepts first and efficient debugging
will save you lots of time

" Light style grading
+ hw28 on Java and C (Closes Sun 6/05) - Extra Credit

« Final Exam

= Released Sunday 6/05 at 11:59pm
" Due Wednesday 6/08 at 11:59pm

+ Course evaluations now open - Please fill these out!

= Separate ones for Lecture and Section

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Today

« End-to-end Review

" What happens after you write your source code?
- How code becomes a program
- How your computer executes your code

+ Victory lap and high-level concepts (key points)

" More useful for “5 years from now”

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up

CSE351, Spring 2022

C: The Low-Level High-Level Language

+» Cis a “hands-off” language that “exposes” more of
hardware (especially memory)

= Weakly-typed language that stresses data as bits

- Anything can be represented with a number!
" Unconstrained pointers can hold address of anything

- And no bounds checking — buffer overflow possible!

" Efficient-byleaving everything up to the programmer

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

C Data Types

» C Primitive types

" Fixed sizes and alignments

® Characters (char), Integers (short, int, lon@
Floating Point (f@t, double)

C'Data Structures”

" Arrays — contiguous chunks of memory

- Multidimensional arrays = still one continuous chunk, but row-major

—_—

- Multi-level arrays = array of pointers to other arrays

{lg_cis — structured group of variables

Struct fields are ordered according to declaration order

- Internal fragmentation: space between members to satisfy member
alignment requirements (aligned for each primitive element)

- External fragmentation: space after last member to satisfy overall struct
alignment requirement (largest primitive member)

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

C and Memory

+» Using C allowed us to examine how we store and
access data in memory

- EWSS (only applies to memory)

- Is the first byte (lowest address) the least significant (little endian) or
most significant (big endian) of your data?

" Array indices and struct fields result in calculating proper
addresses to access

% Consequences of accessing memory in your code:
= Affects performance (locality)

" Affects security

+» But to understand these effects better, we had to
dive deeper...

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

How Code Becomes a Program

text C source code
l Compiler (gcc -0Og -5)
text Assembly files

l Assembler (gcc -cor as)

binary Object files Static libraries
l Linker (gcc or 1d) \
binary Executable program

l Loader (the OS)

| Hardware | 7

WA UNIVERSITY of WASHINGTON

L29: Course Wrap-Up

CSE351, Spring 2022

Instruction Set Architecture

Source code

Different applications
or algorithms

i C Language
_/
Program

A

Program

|
|
|
I
|
|
|
I
|
|
|
I B
|
|
|
I
|
|
|
I
|
|

Your
program

Compiler

Perform optimizations,
generate instructions

ﬂrchitecture \

Instruction set

eec
; CISC
|
|
Clang
RISC
; T s '
: N ARMvV8 |
: '(AArch64/A64) :‘

Hardware

Different
implementations

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

N

AMD Athlon

ARM Cortex-A53

T y

/|

Apple A7

WA UNIVERSITY of WASHINGTON

L29: Course Wrap-Up

Assembly Programmer’s View

CPU

e

Registers

—

Condition
Codes

+» Programmer-visible state

= PC: the Program Counter (3rip in x86-64)

- Address of next instruction

" Named registers

- Together in “register file”
Heavily used program data

= Condition codes

- Store status information about most recent
arithmetic operation

Used for conditional branching

Memory
Addresses
' e Code
Data
< > e Data
~Instructions * Stack
< Memory

CSE351, Spring 2022

= Byte-addressable array

® Huge virtual address

space

= Private, all to yourself...

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Program’s View: Parts of Memory

CPU
) ‘ Memory

. Registers 281

i Fiigh addresses local variables;
Stack rananies;

e procedure context
Condition B
Codes]

t

Dynamic Datla variables allocated
(Hea p) with new or malloc

static variables
Static Data (global variables in C)

) Large constants
Literals (e.g., “example”)

Instructions
Low addresses ()

10

WA UNIVERSITY of WASHINGTON

L29: Course Wrap-Up

Program’s View: Instructions

< |nstructions

= Data movement
* MOV, mOVvVz, MmOVZ

° push, pop

= Arithmetic
— ¢ add, sub, imul

= Control flow
- cmp, test
- Jmp, Je, Jgt,
- call, ret
+» Operand types
= Literal: $8
" Register: $rdi, %al

= Memory: D(Rb,Ri,S) = D+Rb+Ri*S
- lea: not a memory access!

Low addresses

High addresses ‘

2N-1

A

0

Memory

Stack

|

}

|

Dynamic Datla
(Heap)

Static Data

Literals

Instructions

CSE351, Spring 2022

local variables;
procedure context

variables allocated
with new or malloc

static variables
(global variables in C)

Large constants
(e.g., “example”)

11

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Program’s View: Procedures & the Stack

+ Procedures Memory
= Essential abstraction . Zal
= Recursion... High addresses Szl local variables;
ac | procedure context
o Stack discipline I
= Stack frame per call
® Local variables tL
.) . Dynamic Da variables allocated
+ Calling convention (Heap) S ith new or malloc
How to pass arguments ctatic variables
- Diane’s Silk Dress Costs $89 Static Data (global variables in C)
" How to return data
. Large constants
= Return address Literals (e.q., “example”)
= Caller-saved / callee-saved registers
~ -
Instructions
Low addresses (O

12

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up

Program’s View: The Heap

» Heap data \ 3L S

= Flexible size & lifetime

R/

« Allocator

= Balance_throughput and

utilization

dHeut e
= Data structures to keep tr

free blocks

» Must always free memo

= Failing to free results in
memory leaks

D)

e .
+~ @Garbage collection (e.g.
" Garbage collectors find what is
reachable from program

Static Data

Literals

Low addresses ()

Instructions

CSE351, Spring 2022

local variables;
procedure context

variables allocated
with new or malloc

static variables
(global variables in C)

Large constants
(e.g., “example”)

13

CSE351, Spring 2022

WA UNIVERSITY of WASHINGTON

L29: Course Wrap-Up

But remember... it’s all an illusion!

CPU
.. Registers
Srip
Condition
Codes

o
»

. Context switches

a

High addresses

= Don’t really have CPU to yourself

+ Virtual Memory

= Don’t really have 2%* bytes of

memory all to yourself

= Allows for indirection (remap
physical pages, sharing...)

Low addresses

2N-1

y

0

Memory

Stack

|

}

|

Dynamic Datla
(Heap)

Static Data

Literals

Instructions

local variables;
procedure context

variables allocated
with new or malloc

static variables
(global variables in C)

Large constants
(e.g., “example”)

14

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

But remember... it’s all an illusion!

Process 3
p
Process 2
Py < > Memory
%ri egisters N StaCk
Condition
Codes
RS o
Litera.ls -
+« fork \ =, J .
Process 1
= Creates copy of the process —
< > Memory
0:0 e Xe CV %ri — Wghuddrmz— -
Codes
= Replace with new program
Dynamic Da
s (Heap)
‘:‘ w a l t Static Data
= Wait for child to die (to reap it and Lerals
prevent zombies) L
\\ y
Hardware 5

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Virtual Memory

CPU Chip -
9 PTE
VPN e
VA PA
CPU o > MMU a > Cache/

1 Memory
[

Data

+~ Address Translation
= Every memory access must first be converted from virtual to physical
" |ndirection: just change the address mapping when switching processes
= Luckily, TLB (and page size) makes it pretty fast

16

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

But Memory is Also a Lie!

- T T TS s s — T T mm s s -)

i Memory /ﬂ u:_) i

CPU |]g |
| |

Registers ¢ . = < I

brip \ | Cache | | Cache 13 Main Memory | 1
| |

Condition : Cache DRAM :

Codes I I

| |

| |

I I

| |

I I

o e e o o e M M R R M M M R M M M R M M e M M M M e M e e e e

+ Illusion of one flat array of bytes

® But caches invisibly make accesses to physical addresses faster!

+ Caches
= Associativity tradeoff with miss rate and access time
= Block size tradeoff with spatial and temporal locality
= Cache size tradeoff with miss rate and cost

17

W UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Memory Hierarchy

4
1ns
Smaller, cache (SRAM)
faster,
costlier .
er bvte 5-10 ns off-chip L2 1-2 min
per by cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper 150,000 A oo
per byte local secondary storage
10,000,000 n Disk (local disks)

1-150 ms

(10 ms)

remote secondary storage
(distributed file systems, web servers)

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Review of Course Themes

+» Review course goals

" They should make much more sense
now!

19

WA UNIVERSITY of WASHINGTON CSE351, Spring 2022

Big Theme: Abstractions and Interfaces

+» Computing is about abstractions

= (but we can’t forget reality)
«» What are the abstractions that we use?
~:fV\Vhat do you need to know about them?

®= When do they break down and you have to peek under the
hood?

_® What bugs can they cause and how do you find them?

+» How does the hardware relate to the software?

" Become a better programmer and begin to understand the
important concepts that have evolved in building ever more
complex computer systems

20

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Little Theme 1: Representation

*

All digital systems represent everything as Os and 1s

" The 0 and 1 are really two different voltage ranges in the wires
" Or magnetic positions on a disc, or hole depths on a DVD, or even DNA...

“Everything” includes:

= Numbers —integers and floating point

® Characters — the building blocks of strings

" |nstructions — the directives to the CPU that make up a program
" Pointers — addresses of data objects stored away in memory

Encodings are stored throughout a computer system

" |n registers, caches, memories, disks, etc.

They all need addresses (a way to locate)

" Find a new place to put a new item
= Reclaim the place in memory when data no longer needed

21

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Little Theme 2: Translation

+» There is a big gap between how we think about
programs and data and the Os and 1s of computers
" Need languages to describe what we mean
" These languages need to be translated one level at a time

+» We know Java as a programming language
" Have to work our way down to the Os and 1s of computers
" Try not to lose anything in translation!

" We encountered C language, assembly language, and
machine code (for the x86 family of CPU architectures)

22

CSE351, Spring 2022

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up

Little Theme 3: Control Flow

« How do computers orchestrate everything they are doing?

-

Within pne program:
= How do we implement if/else, loops, switches?

= What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

_—= How do we know what to do upon “return”?

% Across programs and operating systems:
= Multiple user programs
" QOperating system has to orchestrate them all
- Each gets a share of computing cycles
- They may need to share system resources (memory, |/0, disks)

‘ " Yielding and taking control of the processor

L)

« Voluntary or “by force”?

23

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Course Perspective

CSE351 will make you a better programmer
" Purpose is to show how software really works

- Understanding of some of the abstractions that exist between
programs and the hardware they run on, why they exist, and how
they build upon each other

" Understanding the underlying system makes you more effective

- Better debugging

- Better basis for evaluating performance

- How multiple activities work in concert (e.g. OS and user programs)
= “Stuff everybody learns and uses and forgets not knowing”

CSE351 presents a world-view that will empower you

" The intellectual and software tools to understand the trillions+ of 1s and
Os that are “flying around” when your program runs

24

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Courses: What’s Next?

Staying near the hardware/software interface:

= CSE369/EE271: Digital Design — basic hardware design using FPGAs

= CSE474/EE474: Embedded Systems — software design for
microcontrollers

J
L4

J
L4

Systems software (CSE major/any-major courses)
= CSE341/CSE413: Programming Languages
= CSE332/CSE373: Data Structures and Parallelism

= CSE333/CSE374: Systems Programming — building well-structured
systems in C/C++

L4

Looking ahead

= CSE401/CSE413: Compilers (pre-reqgs: 332/373, 351)
= CSE451: Operating Systems (pre-reqs: 332, 333)

= CSE461: Networks (pre-reqs: 332, 333)

= CSE484: Computer Security (pre-regs: 332, 351)

25

WA UNIVERSITY of WASHINGTON L29: Course Wrap-Up CSE351, Spring 2022

Thanks for a great quarter!

% Huge thanks to your awesome TAs!

+» Don’t be a stranger!
= Stop by to say “hi” in the fall (Ruth’s Office: CSE 558)!
" | hope to see you in a course sometime in the future!

26

