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Relevant Course Information

 hw24 due Wednesday (5/25) 

 Lab 5 (on Mem Alloc) due Friday 6/03

 Can be submitted at most ONE day late. (Sun 6/05)

 The most significant amount of C programming you will do 
in this class – combines lots of topics from this class: 
pointers, bit manipulation, structs, examining memory

 Understanding the concepts first and efficient debugging 
will save you lots of time

 Light style grading

 hw25 due Monday (5/30)– Do EARLY, will help with Lab 5
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Allocation Policy Tradeoffs

 Data structure of blocks on lists

 Implicit (free/allocated), explicit (free), segregated (many 
free lists) – others possible!

 Placement policy:  first-fit, next-fit, best-fit

 Throughput vs. amount of fragmentation

 When do we split free blocks?

 How much internal fragmentation are we willing to tolerate?
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More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973

 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey 
and Critical Review”, Proc. 1995 Int’l Workshop on 
Memory Management, Kinross, Scotland, Sept, 1995.

 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)
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Memory Allocation

 Dynamic memory allocation

 Introduction and goals

 Allocation and deallocation (free)

 Fragmentation

 Explicit allocation implementation

 Implicit free lists

 Explicit free lists (Lab 5)

 Segregated free lists

 Implicit deallocation:  garbage collection

 Common memory-related bugs in C
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Reading Review

 Terminology:

 Garbage collection:  mark-and-sweep

 Memory-related issues in C
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Wouldn’t it be nice…

 If we never had to free memory?

 Do you free objects in Java?

 Reminder:  implicit allocator
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Garbage Collection (GC)

 Garbage collection:  automatic reclamation of heap-allocated 
storage – application never explicitly frees memory

 Common in implementations of functional languages, scripting 
languages, and modern object oriented languages:
 Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, 

JavaScript, Dart, Mathematica, MATLAB, many more…

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage
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void foo() {

int* p = (int*) malloc(128);

return;  /* p block is now garbage! */

}

(Automatic Memory Management)
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Garbage Collection

 How does the memory allocator know when memory 
can be freed? 

 In general, we cannot know what is going to be used in the 
future since it depends on conditionals

 But, we can tell that certain blocks cannot be used if they 
are unreachable (via pointers in registers/stack/globals)

 Memory allocator needs to know what is a pointer 
and what is not – how can it do this?

 Sometimes with help from the compiler
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Memory as a Graph

 We view memory as a directed graph
 Each allocated heap block is a node in the graph

 Each pointer is an edge in the graph

 Locations not in the heap that contain pointers into the heap are called 
root nodes (e.g. registers, stack locations, global variables)
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A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable
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Garbage Collection

 Dynamic memory allocator can free blocks if there are 
no pointers to them

 How can it know what is a pointer and what is not?

 We’ll make some assumptions about pointers:

 Memory allocator can distinguish pointers from non-
pointers

 All pointers point to the start of a block in the heap

 Application cannot hide pointers 
(e.g. by coercing them to a long, and then back again)
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Classical GC Algorithms

 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)

 Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

 For more information:
 Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of 

Automatic Memory Management, CRC Press, 2012.

 Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic 
Memory, John Wiley & Sons, 1996.
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Mark and Sweep Collecting

 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the header of each block

 Mark: Start at roots and set mark bit on each reachable block

 Sweep: Scan all blocks and free blocks that are not marked
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Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT 
free list pointers
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Assumptions For a Simple Implementation

 Application can use functions to allocate memory:
 b=new(n) returns pointer, b, to new block with all locations cleared

 b[i] read location i of block b into register

 b[i]=v write v into location i of block b

 Each block will have a header word (accessed at b[-1])

 Functions used by the garbage collector:
 is_ptr(p) determines whether p is a pointer to a block

 length(p) returns length of block pointed to by p, not including
header

 get_roots() returns all the roots

14

Non-testable 
Material
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Mark

 Mark using depth-first traversal of the memory graph
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ptr mark(ptr p) {               // p: some word in a heap block

if (!is_ptr(p))    return;   // do nothing if not pointer

if (markBitSet(p)) return;   // check if already marked

setMarkBit(p);               // set the mark bit

for (i=0; i<length(p); i++)  // recursively call mark on

mark(p[i]);               //    all words in the block

return;

}      

Before mark

root

After mark Mark bit set

Non-testable 
Material
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Sweep

 Sweep using sizes in headers
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ptr sweep(ptr p, ptr end) {       // ptrs to start & end of heap

while (p < end) {  // while not at end of heap

if (markBitSet(p))          // check if block is marked

clearMarkBit(p);         // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated

free(p);                 // free the block

p += length(p);             // adjust pointer to next block

}

}     

Non-testable 
Material

After mark Mark bit set

After sweep freefree
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Conservative Mark & Sweep in C

 Would mark & sweep work in C?
 is_ptr determines if a word is a pointer by checking if it points to an 

allocated block of memory

 But in C, pointers can point into the middle of allocated blocks 
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

 There are ways to solve/avoid this problem in C, but the resulting 
garbage collector is conservative:

• Every reachable node correctly identified as reachable, but some unreachable 
nodes might be incorrectly marked as reachable

 In Java, all pointers (i.e. references) point to the starting address of an 
object structure – the start of an allocated block

17

header

ptr

Non-testable 
Material
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Memory-Related Perils and Pitfalls in C
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Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size
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Q1: Find That Bug!  (Slide 19)
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char s[8];

int i;

gets(s);  /* reads "123456789" from stdin */ 

Error Prog stop Fix:
Type: Possible?
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Q2: Find That Bug!  (Slide 20)
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int* foo() {

int val = 0;

return &val;

} 

void bar() {

int* addr = foo();

*addr = 351;

}

Error Prog stop Fix:
Type: Possible?
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Q3: Find That Bug!  (Slide 21)

• N and M defined elsewhere (#define)
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int** p;

p = (int**)malloc( N * sizeof(int) );

for (int i = 0; i < N; i++) {

p[i] = (int*)malloc( M * sizeof(int) );

}

Error Prog stop Fix:
Type: Possible?
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Q4: Find That Bug!  (Slide 22)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)
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/* return y = Ax */

int* matvec(int** A, int* x) { 

int* y = (int*)malloc( N*sizeof(int) );

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Fix:
Type: Possible?
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Q5: Find That Bug!  (Slide 23)

 The classic scanf bug
 int scanf(const char *format, ...)
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int val;

...

scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf
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Q6: Find That Bug!  (Slide 24)
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x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?
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Q7: Find That Bug!  (Slide 25)
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x = (int*)malloc( N * sizeof(int) );

// manipulate x

free(x);

...

y = (int*)malloc( M * sizeof(int) );

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?
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(Not in Ed) Find That Bug!  (Slide 26)
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typedef struct L {

int val;

struct L *next;

} list;

void foo() {

list *head = (list *) malloc( sizeof(list) );

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error Prog stop Fix:
Type: Possible?
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Quick Debugging Note

 Staring at code until you think you spot a bug is 
generally not an effective way to debug!

 Of course it looks logically correct to you – you wrote it!

 Language like C doesn’t abstract away memory – it’s part of 
your program state that you need to keep track of
• Your code will only get longer and more complicated in the future: 

there’s too much to try to keep track of mentally

 Instead, start with bad/unexpected behavior to guide 
your search

 Memory bugs/“errors” can be especially tricky because they 
often don’t result in explicit errors or program stoppages
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Dealing With Memory Bugs

 Make use of all of the tools available to you:

 Pay attention to compiler warnings and errors

 Use debuggers like GDB to track down runtime errors
• Good for bad pointer dereferences, bad with other memory bugs

 valgrind is a powerful debugging and analysis utility for 
Linux, especially good for memory bugs
• Checks each individual memory reference at runtime (i.e., only 

detects issues with parts of code used in a specific execution)

• Can catch many memory bugs, including bad pointers, reading 
uninitialized data, double-frees, and memory leaks
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What about Java or ML or Python or …?

 In memory-safe languages, most of these bugs are 
impossible

 Cannot perform arbitrary pointer manipulation

 Cannot get around the type system

 Array bounds checking, null pointer checking

 Automatic memory management

 But one of the bugs we saw earlier is possible.  Which 
one?

29

Non-testable 
Material
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Memory Leaks with GC

 Not because of forgotten free — we have GC!

 Unneeded “leftover” roots keep objects reachable

 Sometimes nullifying a variable is not needed for correctness 
but is for performance

 Example: Don’t leave big data structures you’re done with in a 
static field
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Root nodes

Heap nodes

not reachable
(garbage)

reachable


