
CSE351, Spring 2022L26: Memory Allocation III

Memory Allocation III
CSE 351 Spring 2022

Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

https://xkcd.com/835/

https://xkcd.com/835/

CSE351, Spring 2022L26: Memory Allocation III

Relevant Course Information

 hw24 due Wednesday (5/25)

 Lab 5 (on Mem Alloc) due Friday 6/03

 Can be submitted at most ONE day late. (Sun 6/05)

 The most significant amount of C programming you will do
in this class – combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

 Understanding the concepts first and efficient debugging
will save you lots of time

 Light style grading

 hw25 due Monday (5/30)– Do EARLY, will help with Lab 5

2

CSE351, Spring 2022L26: Memory Allocation III

Allocation Policy Tradeoffs

 Data structure of blocks on lists

 Implicit (free/allocated), explicit (free), segregated (many
free lists) – others possible!

 Placement policy: first-fit, next-fit, best-fit

 Throughput vs. amount of fragmentation

 When do we split free blocks?

 How much internal fragmentation are we willing to tolerate?

3

CSE351, Spring 2022L26: Memory Allocation III

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973

 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)

4

CSE351, Spring 2022L26: Memory Allocation III

Memory Allocation

 Dynamic memory allocation

 Introduction and goals

 Allocation and deallocation (free)

 Fragmentation

 Explicit allocation implementation

 Implicit free lists

 Explicit free lists (Lab 5)

 Segregated free lists

 Implicit deallocation: garbage collection

 Common memory-related bugs in C

5

CSE351, Spring 2022L26: Memory Allocation III

Reading Review

 Terminology:

 Garbage collection: mark-and-sweep

 Memory-related issues in C

6

CSE351, Spring 2022L26: Memory Allocation III

Wouldn’t it be nice…

 If we never had to free memory?

 Do you free objects in Java?

 Reminder: implicit allocator

7

CSE351, Spring 2022L26: Memory Allocation III

Garbage Collection (GC)

 Garbage collection: automatic reclamation of heap-allocated
storage – application never explicitly frees memory

 Common in implementations of functional languages, scripting
languages, and modern object oriented languages:
 Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

8

void foo() {

int* p = (int*) malloc(128);

return; /* p block is now garbage! */

}

(Automatic Memory Management)

CSE351, Spring 2022L26: Memory Allocation III

Garbage Collection

 How does the memory allocator know when memory
can be freed?

 In general, we cannot know what is going to be used in the
future since it depends on conditionals

 But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

 Memory allocator needs to know what is a pointer
and what is not – how can it do this?

 Sometimes with help from the compiler

9

CSE351, Spring 2022L26: Memory Allocation III

Memory as a Graph

 We view memory as a directed graph
 Each allocated heap block is a node in the graph

 Each pointer is an edge in the graph

 Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, stack locations, global variables)

10

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Spring 2022L26: Memory Allocation III

Garbage Collection

 Dynamic memory allocator can free blocks if there are
no pointers to them

 How can it know what is a pointer and what is not?

 We’ll make some assumptions about pointers:

 Memory allocator can distinguish pointers from non-
pointers

 All pointers point to the start of a block in the heap

 Application cannot hide pointers
(e.g. by coercing them to a long, and then back again)

11

CSE351, Spring 2022L26: Memory Allocation III

Classical GC Algorithms

 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)

 Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

 For more information:
 Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of

Automatic Memory Management, CRC Press, 2012.

 Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

12

CSE351, Spring 2022L26: Memory Allocation III

Mark and Sweep Collecting

 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the header of each block

 Mark: Start at roots and set mark bit on each reachable block

 Sweep: Scan all blocks and free blocks that are not marked

13

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT
free list pointers

CSE351, Spring 2022L26: Memory Allocation III

Assumptions For a Simple Implementation

 Application can use functions to allocate memory:
 b=new(n) returns pointer, b, to new block with all locations cleared

 b[i] read location i of block b into register

 b[i]=v write v into location i of block b

 Each block will have a header word (accessed at b[-1])

 Functions used by the garbage collector:
 is_ptr(p) determines whether p is a pointer to a block

 length(p) returns length of block pointed to by p, not including
header

 get_roots() returns all the roots

14

Non-testable
Material

CSE351, Spring 2022L26: Memory Allocation III

Mark

 Mark using depth-first traversal of the memory graph

15

ptr mark(ptr p) { // p: some word in a heap block

if (!is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit(p); // set the mark bit

for (i=0; i<length(p); i++) // recursively call mark on

mark(p[i]); // all words in the block

return;

}

Before mark

root

After mark Mark bit set

Non-testable
Material

CSE351, Spring 2022L26: Memory Allocation III

Sweep

 Sweep using sizes in headers

16

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap

while (p < end) { // while not at end of heap

if (markBitSet(p)) // check if block is marked

clearMarkBit(p); // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated

free(p); // free the block

p += length(p); // adjust pointer to next block

}

}

Non-testable
Material

After mark Mark bit set

After sweep freefree

CSE351, Spring 2022L26: Memory Allocation III

Conservative Mark & Sweep in C

 Would mark & sweep work in C?
 is_ptr determines if a word is a pointer by checking if it points to an

allocated block of memory

 But in C, pointers can point into the middle of allocated blocks
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

 There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

• Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

 In Java, all pointers (i.e. references) point to the starting address of an
object structure – the start of an allocated block

17

header

ptr

Non-testable
Material

CSE351, Spring 2022L26: Memory Allocation III

Memory-Related Perils and Pitfalls in C

18

Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size

CSE351, Spring 2022L26: Memory Allocation III

Q1: Find That Bug! (Slide 19)

19

char s[8];

int i;

gets(s); /* reads "123456789" from stdin */

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2022L26: Memory Allocation III

Q2: Find That Bug! (Slide 20)

20

int* foo() {

int val = 0;

return &val;

}

void bar() {

int* addr = foo();

*addr = 351;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2022L26: Memory Allocation III

Q3: Find That Bug! (Slide 21)

• N and M defined elsewhere (#define)

21

int** p;

p = (int**)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

p[i] = (int*)malloc(M * sizeof(int));

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2022L26: Memory Allocation III

Q4: Find That Bug! (Slide 22)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)

22

/* return y = Ax */

int* matvec(int** A, int* x) {

int* y = (int*)malloc(N*sizeof(int));

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2022L26: Memory Allocation III

Q5: Find That Bug! (Slide 23)

 The classic scanf bug
 int scanf(const char *format, ...)

23

int val;

...

scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

CSE351, Spring 2022L26: Memory Allocation III

Q6: Find That Bug! (Slide 24)

24

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2022L26: Memory Allocation III

Q7: Find That Bug! (Slide 25)

25

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2022L26: Memory Allocation III

(Not in Ed) Find That Bug! (Slide 26)

26

typedef struct L {

int val;

struct L *next;

} list;

void foo() {

list *head = (list *) malloc(sizeof(list));

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2022L26: Memory Allocation III

Quick Debugging Note

 Staring at code until you think you spot a bug is
generally not an effective way to debug!

 Of course it looks logically correct to you – you wrote it!

 Language like C doesn’t abstract away memory – it’s part of
your program state that you need to keep track of
• Your code will only get longer and more complicated in the future:

there’s too much to try to keep track of mentally

 Instead, start with bad/unexpected behavior to guide
your search

 Memory bugs/“errors” can be especially tricky because they
often don’t result in explicit errors or program stoppages

27

CSE351, Spring 2022L26: Memory Allocation III

Dealing With Memory Bugs

 Make use of all of the tools available to you:

 Pay attention to compiler warnings and errors

 Use debuggers like GDB to track down runtime errors
• Good for bad pointer dereferences, bad with other memory bugs

 valgrind is a powerful debugging and analysis utility for
Linux, especially good for memory bugs
• Checks each individual memory reference at runtime (i.e., only

detects issues with parts of code used in a specific execution)

• Can catch many memory bugs, including bad pointers, reading
uninitialized data, double-frees, and memory leaks

28

CSE351, Spring 2022L26: Memory Allocation III

What about Java or ML or Python or …?

 In memory-safe languages, most of these bugs are
impossible

 Cannot perform arbitrary pointer manipulation

 Cannot get around the type system

 Array bounds checking, null pointer checking

 Automatic memory management

 But one of the bugs we saw earlier is possible. Which
one?

29

Non-testable
Material

CSE351, Spring 2022L26: Memory Allocation III

Memory Leaks with GC

 Not because of forgotten free — we have GC!

 Unneeded “leftover” roots keep objects reachable

 Sometimes nullifying a variable is not needed for correctness
but is for performance

 Example: Don’t leave big data structures you’re done with in a
static field

30

Root nodes

Heap nodes

not reachable
(garbage)

reachable

