WA UNIVERSITY of WASHINGTON

L25: Memory Allocation I

Memory Allocation I

CSE 351 Spring 2022

CSE351, Spring 2022

Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield

Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu

Effie Zheng

MY ACCESS To RESOURCES ON [SUBJTECT] OVER TIME:
1985 1990 1995 2000 7005 200 205 2020

BOOK ON
SUBJECT
[suBTECT].PDF
SITE GOES DOWN, BACKEND
[SUBTECT] WEB DATABASE DATA NOT ON mma
[suBrECT] MOBILE APP m-ﬂ m?a
(LOcAL UNIVERSITY PROJELT)
[SUBJTECT] ANALYSIS SOFTWARE |-—§g,‘ me 'Lfm%
INTERACTIVE [SUBJTECT] CD-ROM 1o b e P TER
LIBRARY MICROFILM
[SUBTECT] COLLECTION

IT¥ UNSETTUNG TO REALIZE HOU QUICKLY DIGITAL RESOURCES
CAN DISAPPEAR WITHOUT ONGOING LIORK TO MAINTAIN THEM.

http://xkcd.com/1909/

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Relevant Course Information

+» hw22 due Monday (5/23)
+» hw24 due Wednesday (5/25)
+» Lab 5 (on Mem Alloc) due Friday 6/03

Can be submitted at most ONE day late. (Sun 6/05)

The most significant amount of C programming you will do
in this class — combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

Understanding the concepts first and efficient debugging
will save you lots of time

Light style grading
hw25 — Do EARLY, will help with Lab 5

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il

Reading Review

+» Terminology:

Allocation strategies: first fit, next fit, best fit
Allocating a block: splitting, minimum block size
Freeing a block: coalescing

Boundary tags: header and footer

Explicit free list

CSE351, Spring 2022

L25: Memory Allocation Il CSE351, Spring 2022

WA UNIVERSITY of WASHINGTON

= 8-byte word

Implicit Free List Example

Each block begins with header (size in bytes and allocated bit)
Sequence of blocks in heap (size|allocated):
16]0,32|1, 640, 32|1

L sz 4 33 actual header dcta

16 23
Start of heap bleek - %
¥

/
0.0

/
0.0

Free word

Allocated word

6410
A

N

16 bytes = 2 word alignment

Allocated word
unused

(P2
[d
-

+ 16-byte alignment for payload
= May require initial padding (internal fragmentation)
" Note size: paddingis considered part of previous block

J%Special one-word marker (0]|1) marks end of list

= Zero size is distinguishable from all other blocks

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

(*p) gets the block
header

Implicit List: Finding a Free Block | ¢v&1exacts the

allocated bit

. . (*p & -2) extracts
X FIrStflt the size

= Search list from beginning, choose first free block that fits:

p = heap start;
while ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) | // too small et‘mva\a\'\' to poin'}ef arl‘ﬂm.éli(wih
p=p+ (*p & -2); // go to next block (UNSCALED +) ¥
} // p points to selected block or end

. . O(n) e
= Can take time linear in total number of blocks

" |n practice can cause “splinters” at beginning of list

heap start mr 4
\/_\ . ree wor

§2|‘T 32|1 Allocated word

K Allocated word
aloccted unused

P

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Implicit List: Finding a Free Block

+» Next fit

" Like first-fit, but search list starting where previous search_
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

+ Best fit

= Search the list, choose the best free block: large enough
AND with_fewest bytes left over

= Keeps fragments small—usually helps fragmentation

= Usually worse throughput

W UNIVERSITY of WASHINGTON L25: Memory Allocation Il

Polling Question

+ Which allocation strategy and requests
remove external fragmentation in this
Heap? B3\NastheIastﬂﬂﬁ”ed?gaaggﬁ\

S r> «ce
5:: 7o e r7
lo loc\d

= Vote in Ed Lessons
(A) Best-fit:
malloc (50),malloc (50)
(B) First-fit:
malloc (50), malloc (30) |
(C) Next-fit:
malloc (30),malloc (50)
(D) Next-fit: !
malloc (50),malloc (30)

Start of heap

CSE351, Spring 2022

50

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Implicit List: Allocating in a Free Block

Nnev A\")(‘d-e& / new -{;ee

+» Allocating in a free block: splitting W{+ \

= Since allocated space might be smaller than free space, we
might want to split the block

Assume ptr points to a free block and has unscaled pointer arithmetic

void split (ptr b, int bytes) { // bytes = desired block size
Ci) int nevg\r’ézize = ((bzvqtes+15) >> 4) << 44 // round up to multiple of 16
® int oldsize = *b; // why not mask out low bit?
(7)) *b = newsize; // initially unallocated
@ if (newsize < oldsize)
(3 * (b+newsize) = o01d¥ize - newsize; // set length in remaining
} // part of block (UNSCALED +)
header
malloc (24) : L 16]1 T48|0 1611 Free word
g;ilkt) (b, f;zfé§4+8) b Allocated word
allocate (b) Newly-allocated
Lot a=l 161 132t 16/0, (161 word
® ©) 8

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Implicit List: Freeing a Block

+» Simplest implementation just clears “allocated” flag
" void free(ptr p) {*(p—-WORD) &= -2;}

" But can lead to “false fragmentation”

0 16/0
16t 32& | 1ot Free word
P Allocated word
/\/\/‘\ Block of interest
free (p) 16]1] [32/0 160, 161
N _— J
malloc (40) Oops! There is enough free space, but

the allocator won’t be able to find it

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Implicit List: Coalescing with Next

% Join (coalesce) with next block if also free

1611 |32/t (6D |16/

T 3 ; Free word
b p next Allocated word
/\/_\ Block of interest
free (p) 1610 Jasio) 16|(L 16/1
_ﬂ//\\/~\~/’—~\~ijk\\
‘7 ~~ Jogically gone
void free (ptr p) L // p points to payload
ptr b = p - WORD; // b points to block header
*b &= -2; a2 // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*nexg & 1) == 0) // if next block is not allocated,
*b += *néxt; // add its size to this block
}

+» How do we coalesce with the preceding block? we 't

CUvredle
10

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Implicit List: Bidirectional Coalescing

% Boundary tags [Knuth73]
= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
" Important and general technique!

32/0 32/032/1 32/148/0 48/0/32/1 32/1

W_/
P

Format of \eader size a| a=1: allocated block

allocated and 4 a =0: free block
free blocks:
payloagl e size: block size (in bytes)
Boundary tags padding
| payload: application data

Footer size a| (allocated blocks only)

11

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

12

WA UNIVERSITY of WASHINGTON

C

Case 1

Case 3

m1

m1

m1

n

m1

n

m?2

m?2

m?2

m?2

m1

n+ml

m1

m?2

n+ml

m?2

m?2

m?2

L25: Memory Allocation I

stant Time Coalescing

Case 2

Case 4

m1

CSE351, Spring 2022

m1

m1

m1

n+m?2

m?2

r

—

n+m?2

m1

n+ml+m?2

m1

m?2

m?2

n+ml+m?2

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Implicit) Free List Review Questions

Cwnyven

\O\OC\L -\J e ~ ’/97—5\ /"’,——_;.’\\
ya
2

/ 32/0@/1 3214810 481082/} 321
© NO__.- T -

+ What is the block header? What do we store and how?
Slores wfo aboat block sizeof bodle , is-allocated?
AL ‘o\,..aﬁ kf"o'(hea&&f

+» What are boundary tags and why do we need them?
L\(’Gsdef and 'FQS\'CI‘ (ftx’”\e IV\'PO) SO \we Gn +FGVE'TS€ l\s“' n G’H\N A"nedbl/\

(r)GY‘r\.C\A‘QY\Y 'Fo.r COC\‘ ese nj)
« When we coalesce free blocks, how many neighboring blocks

do we need to check on either side? Why is this?
)us* 1 - c\dja(en‘\' 'Frec \o‘od() ﬁ\m\(} l'vcwc a\nu\y \be(-'V\ C'aox‘@keo\

+ If | want to check the size of the n-th block forward from the
current block, how many memory accesses do | make?

'Y\"" neek h Y'COA Cuvrer\+ IO\D(k kea&er [} l,vcﬂ I\ L\ea}(’r &F '{’Qr9€+ block
"fo €+ Hhe 5\ze

14

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

= 8-byte word (free)

Keeping Track of Free Blocks

= 8-byte word (allocated)

1) Img/icif\free’llist using length — links all blocks using math

= No actual pointers, and must check each block if allocated or free
-~ ~ -~ " it

40 32 48 16

—

Gﬁxplicitfree list among only the free blocks, using pointers

/_\

40 (3_/ 32 48 16

—3) Segregated free list
= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
15

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il

CSE351, Spring 2022

Explicit Free Lists

Allocated block: Free block:
size a size a
— payload and @
padding
size a size a

(same as implicit free list)

+ Use list(s) of free blocks, rather than implicit list of all blocks
" The “next” free block could be anywhere in the heap
- So we need to store next/previous pointers, not just sizes
= Since we only track free blocks, so we can use “payload” for pointers
= Still need boundary tags (header/footer) for coalescing

16

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Doubly-Linked Lists

NuLL prev ‘\'/\ N
& ol ¢ - =
tinear sed QA - O
= Needs head/root pointer struch

" First node prev pointer is NULL

= Last node next pointer is NULL

" Good for first-fit, best-fit

start [@] X o[o'/}\\{/,o o'/}\\/ /\\/‘(,o T®
G move

+ Circular o Lqy_node \ /

in free \ict

= Still have pointer to tell you which node to start with
"= No NULL pointers (term condition is back at starting point)

® Good for next-fit, best-fit

17

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Explicit Free Lists

+ Logically: doubly-linked list

A |1 8 [C
A\ " N 4 7] W\ h
hode O V\OJC 1 node Z

+ Physically: blocks can be in any order

—
v

/ Forward (next) links

A B o

32p=7puB2 32 32| aghed _ | |48[32predant32]32L. Y L 4]32| €otoning

C \/7——
K Back (prev) links

previous Jrext Hod;s Gre parT of free li st
pfeced"f_g /follmy;nj blocks are p‘\y.;ical hefg]n&)ors

A

°\
\

~Ne
<

18

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before
f node n-| ia \i$+ ["
s;\- }e\ed’ed\
node nin \ist 0*“0(&"'9& / {ree vee bock
7
hode i ia list | @ %
After |
(with splitting) ® H poirters wpdated:
2 in nole N
| A wode m-|
\ I i~ wode m+\
st Y\J‘C n " \lf\'
. ‘ Some num‘yef 6F r\ers
= malloc(..) in free list

19

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before nobe -l °
Sore herp
node m
store here
hode "_bﬂ o
z'{ltﬁ; allocated) sl node el L Poﬁeq upcldea\

1 fewes node in Hree llist

Nnow the hew nide n

= malloc(...)

20

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

%IFO (last-in-first-out) policy
Insert freed block at the beginning Lead) of the free list

« Pro: simple and constant time
- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
- Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)
- Con: requires linear-time search

- Pro: studies suggest fragmentation is better than the alternative

21

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4
P’fﬁ@\""ﬁ — | Allocated Allocated Free Free
Block being freed —
fo“"“‘"ﬂ‘—"ﬁ Allocated Free Allocated Free

+ Neighboring free blocks are already part of the free
list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

+~ How do we tell if a neighboring block is free? |
can still wse \Q)\mdan/ ‘\'ajs (dm'l' need o sear —fm | .y‘) cthe. lmrltwen Tong PSJIL’Q
(see LabS) 2z

WA UNIVERSITY of WASHINGTON

Freeing with LIFO Policy (Case 1) [

Before

Root

L25: Memory Allocation I

CSE351, Spring 2022

shown, but don’t

Boundary tags not
forget about them!

free (@)

« Insert the freed block at the root of the list

After

node O

O

!

(«M}kuﬂa\ node @

new wode 1

23

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Boundary tags not]

Freeing with LIFO Policy (Case 2) [Shown' but don't

forget about them!

Before free (@)
o

f

&o

» Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root ' O :

o ¢
@

24

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Boundary tags not]

Freeing with LIFO Policy (Case 3) [Shown' but don'

forget about them!

Before free (@)
®

t

&o

» Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After

ROOt H O :

25

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Boundary tags not]

Freeing with LIFO Policy (Case 4) [Shown' but don'

forget about them!

Before free (@)
o o

Root iI }I &o

O
» Splice preceding and following blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

After

Root H

26

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Do we always need the boundary tags?

Allocated block: Free block:
Size a Size a
next
payload and At
padding

v /;e// Va size a

(same as implicit free list)

=+ Lab 5 suggests no...

27

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Explicit List Summary

«» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks
« Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

28

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

BONUS SLIDES

The following slides are about the SeglList Allocator, for
those curious. You will NOT be expected to know this
material.

29

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

= 8-byte box (free)

Keeping Track of Free Blocks _ g-byte box (allocated)

1) Implicit free list using length — links all blocks using math

= No actual pointers, and must check each block if allocated or free

’f__N\ /’—5\\ ~~~~~~
/’ ' Vo A/’ ~

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

40| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
30

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il

Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list
+ QOrganized as an array of free lists

Size class
(in bytes)

r{? 16 — — — —

0 32

\ 4

!

)

rly

48-64

!

> 80-inf —

+ Often have separate classes for each small size
« For larger sizes: One class for each two-power size

CSE351, Spring 2022

31

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Seglist Allocator

«» Have an array of free lists for various size classes

« To allocate a block of size n:

= Search appropriate free list for block of size m = n

= |f an appropriate block is found:
- [Optional] Split block and place free fragment on appropriate list

" |f no block is found, try the next larger class
- Repeat until block is found
+ If no block is found:
= Request additional heap memory from OS (using sbrk)

" Place remainder of additional heap memory as a single free

block in appropriate size class
32

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

SeglList Allocator

«» Have an array of free lists for various size classes

+» To free a block:
= Mark block as free
= Coalesce (if needed)
" Place on appropriate class list

33

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

SeglList Advantages

+» Higher throughput

= Search is log time for power-of-two size classes

+» Better memory utilization

" First-fit search of seglist approximates a best-fit search of
entire heap

= FExtreme case: Giving every block its own size class is no
worse than best-fit search of an explicit list

" Don’t need to use space for block size for the fixed-size
classes

34

