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Relevant Course Information

+» hw22 due Monday (5/23)
+» hw24 due Wednesday (5/25)
+» Lab 5 (on Mem Alloc) due Friday 6/03

Can be submitted at most ONE day late. (Sun 6/05)

The most significant amount of C programming you will do
in this class — combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

Understanding the concepts first and efficient debugging
will save you lots of time

Light style grading
hw25 — Do EARLY, will help with Lab 5
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Reading Review

+» Terminology:

Allocation strategies: first fit, next fit, best fit
Allocating a block: splitting, minimum block size
Freeing a block: coalescing

Boundary tags: header and footer

Explicit free list

CSE351, Spring 2022
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= 8-byte word

Implicit Free List Example

Each block begins with header (size in bytes and allocated bit)
Sequence of blocks in heap (size|allocated):
16]0,32|1, 640, 32|1

L sz 4 33 actual header dcta

16 23
Start of heap bleek - %
¥

/
0.0

/
0.0

Free word

Allocated word

6410
A

N

16 bytes = 2 word alignment

Allocated word
unused

(P2
[ d
-

+ 16-byte alignment for payload
= May require initial padding (internal fragmentation)
" Note size: paddingis considered part of previous block

J%Special one-word marker (0]|1) marks end of list

= Zero size is distinguishable from all other blocks
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(*p) gets the block
header

Implicit List: Finding a Free Block | ¢v&1exacts the

allocated bit

. . (*p & -2) extracts
X FIrStflt the size

= Search list from beginning, choose first free block that fits:

p = heap start;
while ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) | // too small et‘mva\a\'\' to poin'}ef arl‘ﬂm.éli( wih
p=p+ (*p & -2); // go to next block (UNSCALED +) ¥
} // p points to selected block or end

. . O(n) e
= Can take time linear in total number of blocks

" |n practice can cause “splinters” at beginning of list

heap start mr 4
\/\_\ . ree wor

§2|‘T 32|1 Allocated word

K Allocated word
aloccted unused

P
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Implicit List: Finding a Free Block

+» Next fit

" Like first-fit, but search list starting where previous search_
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

+ Best fit

= Search the list, choose the best free block: large enough
AND with_fewest bytes left over

= Keeps fragments small—usually helps fragmentation

= Usually worse throughput
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Polling Question

+ Which allocation strategy and requests
remove external fragmentation in this
Heap? B3\NastheIastﬂﬂﬁ”ed?gaaggﬁ\

S r> «ce
5:: 7o e r7
lo loc\d

= Vote in Ed Lessons
(A) Best-fit:
malloc (50),malloc (50)
(B) First-fit:
malloc (50), malloc (30) |
(C) Next-fit:
malloc (30),malloc (50)
(D) Next-fit: !
malloc (50),malloc (30)

Start of heap

CSE351, Spring 2022
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Implicit List: Allocating in a Free Block

Nnev A\")(‘d-e& / new -{;ee

+» Allocating in a free block: splitting W{+ \

= Since allocated space might be smaller than free space, we
might want to split the block

Assume ptr points to a free block and has unscaled pointer arithmetic

void split (ptr b, int bytes) { // bytes = desired block size
Ci) int nevg\r’ézize = ((bzvqtes+15) >> 4) << 44 // round up to multiple of 16
® int oldsize = *b; // why not mask out low bit?
(7)) *b = newsize; // initially unallocated
@ if (newsize < oldsize)
(3 * (b+newsize) = o01d¥ize - newsize; // set length in remaining
} // part of block (UNSCALED +)
header
malloc (24) : L 16]1 T48|0 1611 Free word
g;ilkt) (b, f;zfé§4+8) b Allocated word
allocate (b) Newly-allocated
Lot a=l 161 132t 16/0, (161 word
® ©) 8
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Implicit List: Freeing a Block

+» Simplest implementation just clears “allocated” flag
" void free(ptr p) {*(p—-WORD) &= -2;}

" But can lead to “false fragmentation”

0 16/0
16t 32& | 1ot Free word
P Allocated word
/\/\/‘\ Block of interest
free (p) 16]1]  [32/0 160, 161
N _— J
malloc (40) Oops! There is enough free space, but

the allocator won’t be able to find it



WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Implicit List: Coalescing with Next

% Join (coalesce) with next block if also free

1611 |32/t (6D |16/

T 3 ; Free word
b p next Allocated word
/\/_\ Block of interest
free (p) 1610 Jasio) 16|(L 16/1
\_ﬂ//\\/~\~/’—~\~ijk\\
‘7 ~~ Jogically gone
void free (ptr p) L // p points to payload
ptr b = p - WORD; // b points to block header
*b &= -2; a2 // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*nexg & 1) == 0) // if next block is not allocated,
*b += *néxt; // add its size to this block
}

+» How do we coalesce with the preceding block? we 't

CUvredle
10
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Implicit List: Bidirectional Coalescing

% Boundary tags [Knuth73]
= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
" Important and general technique!

32/0 32/032/1 32/148/0 48/0/32/1 32/1

W\_/
P

Format of \eader size a| a=1: allocated block

allocated and 4 a =0: free block
free blocks:
payloagl e size: block size (in bytes)
Boundary tags padding
| payload: application data

Footer size a| (allocated blocks only)

11
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Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

12
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C

Case 1

Case 3

m1

m1

m1

n

m1

n

m?2

m?2

m?2

m?2

m1

n+ml

m1

m?2

n+ml

m?2

m?2

m?2

L25: Memory Allocation I

stant Time Coalescing

Case 2

Case 4

m1

CSE351, Spring 2022

m1

m1

m1

n+m?2

m?2

r

—

n+m?2

m1

n+ml+m?2

m1

m?2

m?2

n+ml+m?2
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Implicit) Free List Review Questions

Cwnyven

\O\OC\L -\J e ~ ’/97—5\ /"’,——_;.’\\
ya
2

/ 32/0@/1 3214810 481082/} 321
© NO__.- T -

+ What is the block header? What do we store and how?
Slores wfo aboat block sizeof bodle , is-allocated?
AL ‘o\,..aﬁ kf"o'( hea&&f

+» What are boundary tags and why do we need them?
L\(’Gsdef and 'FQS\'CI‘ (ftx’”\e IV\'PO) SO \we Gn +FGVE'TS€ l\s“' n G’H\N A"nedbl/\

(r)GY‘r\.C\A‘QY\Y 'Fo.r COC\‘ ese nj)
« When we coalesce free blocks, how many neighboring blocks

do we need to check on either side? Why is this?
)us* 1 - c\dja(en‘\' 'Frec \o‘od() ﬁ\m\(} l'vcwc a\nu\y \be(-'V\ C'aox‘@keo\

+ If | want to check the size of the n-th block forward from the
current block, how many memory accesses do | make?

'Y\"" neek h Y'COA Cuvrer\+ IO\D(k kea&er [} l,vcﬂ I\ L\ea}(’r &F '{’Qr9€+ block
"fo €+ Hhe 5\ze

14
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= 8-byte word (free)

Keeping Track of Free Blocks

= 8-byte word (allocated)

1) Img/icif\free’llist using length — links all blocks using math

= No actual pointers, and must check each block if allocated or free
-~ ~ -~ " it

40 32 48 16

—

Gﬁxplicitfree list among only the free blocks, using pointers

/_\

40 (3_/ 32 48 16

—3) Segregated free list
= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
15
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CSE351, Spring 2022

Explicit Free Lists

Allocated block: Free block:
size a size a
— payload and @
padding
size a size a

(same as implicit free list)

+ Use list(s) of free blocks, rather than implicit list of all blocks
" The “next” free block could be anywhere in the heap
- So we need to store next/previous pointers, not just sizes
= Since we only track free blocks, so we can use “payload” for pointers
= Still need boundary tags (header/footer) for coalescing

16



WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Spring 2022

Doubly-Linked Lists

NuLL prev ‘\'/\ N
& ol ¢ - =
tinear  sed QA - O
= Needs head/root pointer struch

" First node prev pointer is NULL

= Last node next pointer is NULL

" Good for first-fit, best-fit

start [@] X o[ o'/}\\{/,o o'/}\\/ /\\/‘(,o T®
G move

+ Circular o Lqy_node \ /

in free \ict

= Still have pointer to tell you which node to start with
"= No NULL pointers (term condition is back at starting point)

® Good for next-fit, best-fit

17
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Explicit Free Lists

+ Logically: doubly-linked list

A |1 8 [ C
A\ " N 4 7] W\ h
hode O V\OJC 1 node Z

+ Physically: blocks can be in any order

—
v

/ Forward (next) links

A B o

32p=7puB2 32 32| aghed \_ | |48[32predant32]32L. Y L 4]32| €otoning

C \/7——
K Back (prev) links

previous Jrext Hod;s Gre parT of free li st
pfeced"f\_g /follmy;nj blocks are p‘\y.;ical hefg]n&)ors

A

°\
\

~Ne
<

18
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Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before
f node n-| ia \i$+ [ "
s;\- }e\ed’ed\
node nin \ist 0*“0(&"'9& / {ree vee bock
7
hode i ia list | @ %
After |
(with splitting) ® H poirters wpdated:
2 in nole N
| A wode m-|
\ I i~ wode m+\
st Y\J‘C n " \lf\'
. ‘ Some num‘yef 6F r\ers
= malloc(..) in free list

19
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Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before nobe -l °
Sore herp
node m
store here
hode "_bﬂ o
z'{ltﬁ; allocated) sl node el L Poﬁeq upcldea\

1 fewes node in Hree llist

Nnow the hew nide n

= malloc(...)

20
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Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

%IFO (last-in-first-out) policy
Insert freed block at the beginning Lead) of the free list

« Pro: simple and constant time
- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
- Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)
- Con: requires linear-time search

- Pro: studies suggest fragmentation is better than the alternative

21
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Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4
P’fﬁ@\""ﬁ — | Allocated Allocated Free Free
Block being freed —
fo“"“‘"ﬂ‘—"ﬁ Allocated Free Allocated Free

+ Neighboring free blocks are already part of the free
list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

+~ How do we tell if a neighboring block is free? |
can still wse \Q)\mdan/ ‘\'ajs (dm'l' need o sear —fm | .y‘) cthe. lmrltwen Tong PSJIL’Q
(see LabS) 2z
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Freeing with LIFO Policy (Case 1) [

Before

Root

L25: Memory Allocation I

CSE351, Spring 2022

shown, but don’t

Boundary tags not
forget about them!

free (@)

« Insert the freed block at the root of the list

After

node O

O

!

(«M}kuﬂa\ node @

new wode 1

23
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Boundary tags not]

Freeing with LIFO Policy (Case 2) [Shown' but don't

forget about them!

Before free (@)
o

f

&o

» Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root ' O :

o ¢
@

24
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Boundary tags not]

Freeing with LIFO Policy (Case 3) [Shown' but don'

forget about them!

Before free (@)
®

t

&o

» Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After

ROOt H O :

25
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Boundary tags not]

Freeing with LIFO Policy (Case 4) [Shown' but don'

forget about them!

Before free (@)
o o

Root iI }I &o

O
» Splice preceding and following blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

After

Root H

26
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Do we always need the boundary tags?

Allocated block: Free block:
Size a Size a
next
payload and At
padding

v /;e// Va size a

(same as implicit free list)

=+ Lab 5 suggests no...

27
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Explicit List Summary

«» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks
« Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

28
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BONUS SLIDES

The following slides are about the SeglList Allocator, for
those curious. You will NOT be expected to know this
material.

29
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= 8-byte box (free)

Keeping Track of Free Blocks _ g-byte box (allocated)

1) Implicit free list using length — links all blocks using math

= No actual pointers, and must check each block if allocated or free

’f__N\ /’—5\\ ~~~~~~
/’ ' Vo A/’ ~

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

40| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
30
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Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list
+ QOrganized as an array of free lists

Size class
(in bytes)

r{? 16 — — — —

0 32

\ 4

!

)

rly

48-64

!

> 80-inf —

+ Often have separate classes for each small size
« For larger sizes: One class for each two-power size

CSE351, Spring 2022

31
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Seglist Allocator

«» Have an array of free lists for various size classes

« To allocate a block of size n:

= Search appropriate free list for block of size m = n

= |f an appropriate block is found:
- [Optional] Split block and place free fragment on appropriate list

" |f no block is found, try the next larger class
- Repeat until block is found
+ If no block is found:
= Request additional heap memory from OS (using sbrk)

" Place remainder of additional heap memory as a single free

block in appropriate size class
32
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SeglList Allocator

«» Have an array of free lists for various size classes

+» To free a block:
= Mark block as free
= Coalesce (if needed)
" Place on appropriate class list

33
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SeglList Advantages

+» Higher throughput

= Search is log time for power-of-two size classes

+» Better memory utilization

" First-fit search of seglist approximates a best-fit search of
entire heap

= FExtreme case: Giving every block its own size class is no
worse than best-fit search of an explicit list

" Don’t need to use space for block size for the fixed-size
classes

34



