
CSE351, Spring 2022L24: Memory Allocation I

Memory Allocation I
CSE 351 Spring 2022

Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

Adapted from
https://xkcd.com/1093/

https://xkcd.com/627/

CSE351, Spring 2022L24: Memory Allocation I

Relevant Course Information

 hw21 due Friday (5/20)

 Lab 4 due Friday (5/20)

 Cache parameter puzzles and code optimizations

 hw22 due Monday (5/23)

 hw24 due Wednesday (5/25)

 Lab 5 (on Mem Alloc) coming soon!

 Will want to look at readings for next week to get started

 Can be submitted at most ONE day late. (Sun 6/05)

2

CSE351, Spring 2022L24: Memory Allocation I

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2022L24: Memory Allocation I

Reading Review

 Terminology:

 Dynamically-allocated data: malloc, free

 Allocators: implicit vs. explicit allocators, heap blocks,
implicit vs. explicit free lists

 Heap fragmentation: internal vs. external

4

CSE351, Spring 2022L24: Memory Allocation I

Multiple Ways to Store Program Data

 Static global data
 Fixed size at compile-time

 Entire lifetime of the program
(loaded from executable)

 Portion is read-only
(e.g. string literals)

 Stack-allocated data
 Local/temporary variables

• Can be dynamically sized (in some versions of C)

 Known lifetime (deallocated on return)

 Dynamic (heap) data
 Size known only at runtime (i.e. based on user-input)

 Lifetime known only at runtime (long-lived data structures)

5

int array[1024];

int* foo(int n) {

int tmp;

int local_array[n];

int* dyn =

(int*)malloc(n*sizeof(int));

return dyn;

}

CSE351, Spring 2022L24: Memory Allocation I

Memory Allocation

 Dynamic memory allocation

 Introduction and goals

 Allocation and deallocation (free)

 Fragmentation

 Explicit allocation implementation

 Implicit free lists

 Explicit free lists (Lab 5)

 Segregated free lists

 Implicit deallocation: garbage collection

 Common memory-related bugs in C

6

CSE351, Spring 2022L24: Memory Allocation I

Dynamic Memory Allocation (Review)

 Programmers use dynamic memory allocators to
acquire virtual memory at run time

 For data structures whose size
(or lifetime) is known only at runtime

 Manage the heap of a process’
virtual memory:

 Types of allocators

 Explicit allocator: programmer allocates and frees space
• Example: malloc and free in C

 Implicit allocator: programmer only allocates space (no free)
• Example: garbage collection in Java, Caml, and Lisp

7

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Spring 2022L24: Memory Allocation I

Dynamic Memory Allocation

 Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

 Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

 Application objects are typically smaller than pages, so the
allocator manages blocks within pages
• (Larger objects handled too;

ignored here)

8

Top of heap
(brk ptr)

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Spring 2022L24: Memory Allocation I

Allocating Memory in C (Review)

 Need to #include <stdlib.h>

 void* malloc(size_t size)

 Allocates a continuous block of size bytes of uninitialized memory

 Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

 Different blocks not necessarily adjacent

 Good practices:
 ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable

• void* is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

9

CSE351, Spring 2022L24: Memory Allocation I

Allocating Memory in C (Review)

 Need to #include <stdlib.h>

 void* malloc(size_t size)

 Allocates a continuous block of size bytes of uninitialized memory

 Returns a pointer to the beginning of the allocated block; NULL
indicates failed request

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

 Different blocks not necessarily adjacent

 Related functions:
 void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block

 void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)

 void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap
10

CSE351, Spring 2022L24: Memory Allocation I

Freeing Memory in C (Review)

 Need to #include <stdlib.h>

 void free(void* p)

 Releases whole block pointed to by p to the pool of available memory

 Pointer p must be the address originally returned by m/c/realloc
(i.e. beginning of the block), otherwise system exception raised

 Don’t call free on a block that has already been released

11

CSE351, Spring 2022L24: Memory Allocation I

Memory Allocation Example in C

12

void foo(int n, int m) {

int i, *p;

p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */

if (p == NULL) { /* check for allocation error */

perror("malloc");

exit(0);

}

for (i=0; i<n; i++) /* initialize int array */

p[i] = i;

/* add space for m ints to end of p block */

p = (int*) realloc(p,(n+m)*sizeof(int));

if (p == NULL) { /* check for allocation error */

perror("realloc");

exit(0);

}

for (i=n; i < n+m; i++) /* initialize new spaces */

p[i] = i;

for (i=0; i<n+m; i++) /* print new array */

printf("%d\n", p[i]);

free(p); /* free p */
}

CSE351, Spring 2022L24: Memory Allocation I

Notation

 We will draw memory divided into words

 Each word is 64 bits = 8 bytes

 Allocations will be in sizes that are a multiple of words
(i.e. multiples of 8 bytes)

 Book and old videos still use 4-byte word
• Holdover from 32-bit version of textbook 🙁

13

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes

CSE351, Spring 2022L24: Memory Allocation I

Allocation Example

14

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word

CSE351, Spring 2022L24: Memory Allocation I

Implementation Interface (Review)

 Applications
 Can issue arbitrary sequence of malloc and free requests

 Must never access memory not currently allocated

 Must never free memory not currently allocated
• Also must only use free with previously malloc’ed blocks

 Allocators

 Can’t control number or size of allocated blocks

 Must respond immediately to malloc

 Must allocate blocks from free memory

 Must align blocks so they satisfy all alignment requirements

 Can’t move the allocated blocks
15

CSE351, Spring 2022L24: Memory Allocation I

Performance Goals (Review)

 Goals: Given some sequence of malloc and free
requests 𝑅0, 𝑅1, … , 𝑅𝑘 , … , 𝑅𝑛−1, maximize throughput
and peak memory utilization

 These goals are often conflicting

1) Throughput

 Number of completed requests per unit time

 Example:
• If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,

then throughput is 1,000 operations/second

16

CSE351, Spring 2022L24: Memory Allocation I

Performance Goals

 Definition: Aggregate payload 𝑃𝑘
 malloc(p) results in a block with a payload of p bytes

 After request 𝑅𝑘 has completed, the aggregate payload 𝑃𝑘
is the sum of currently allocated payloads

 Definition: Current heap size 𝐻𝑘
 Assume 𝐻𝑘 is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

 Defined as 𝑈𝑘 = (max
𝑖≤𝑘

𝑃𝑖)/𝐻𝑘 after 𝑘+1 requests

 Goal: maximize utilization for a sequence of requests

 Why is this hard? And what happens to throughput?
17

CSE351, Spring 2022L24: Memory Allocation I

Fragmentation (Review)

 Poor memory utilization is caused by fragmentation

 Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

 Two types: internal and external

 Recall: Fragmentation in structs
 Internal fragmentation was wasted space inside of the struct

(between fields) due to alignment

 External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

 Now referring to wasted space in the heap inside or
between allocated blocks

18

CSE351, Spring 2022L24: Memory Allocation I

Internal Fragmentation

 For a given block, internal fragmentation occurs if
payload is smaller than the block

 Causes:
 Padding for alignment purposes

 Overhead of maintaining heap data structures (inside block,
outside payload)

 Explicit policy decisions (e.g. return a big block to satisfy a
small request)

 Easy to measure because only depends on past
requests

19

payload
Internal
fragmentation

block

Internal
fragmentation

CSE351, Spring 2022L24: Memory Allocation I

External Fragmentation

 For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
 That is, the aggregate payload is non-continuous

 Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

 Don’t know what future requests will be
 Difficult to impossible to know if past placements will become

problematic
20

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word

CSE351, Spring 2022L24: Memory Allocation I

Polling Question

 Which of the following statements is FALSE?

 Vote in Ed Lessons

A. Temporary arrays should not be allocated on the
Heap

B. malloc returns an address of a block that is
filled with random data

C. Peak memory utilization is a measure of both
internal and external fragmentation

D. An allocation failure will cause your program to
stop

21

CSE351, Spring 2022L24: Memory Allocation I

Implementation Issues

 How do we know how much memory to free given
just a pointer?

 How do we keep track of the free blocks?

 How do we pick a block to use for allocation (when
many might fit)?

 What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

 How do we reinsert a freed block into the heap?

22

CSE351, Spring 2022L24: Memory Allocation I

Knowing How Much to Free

 Standard method

 Keep the length of a block in the word preceding the data
• This word is often called the header field or header

 Requires an extra word for every allocated block

23

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Spring 2022L24: Memory Allocation I

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
 No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
 Different free lists for different size “classes”

4) Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
24

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Spring 2022L24: Memory Allocation I

Implicit Free Lists

 For each block we need: size, is-allocated?

 Could store using two words, but wasteful

 Standard trick
 If blocks are aligned, some low-order bits of size are always 0

 Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)

 When reading size, must remember to mask out this bit!

25

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte alignment,
possible values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
. . .

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

size | a;

x & 1;

x & ~1;

CSE351, Spring 2022L24: Memory Allocation I

Header Questions

 How many “flags” can we fit in our header if our
allocator uses 16-byte alignment?

 If we placed a new “flag” in the second least
significant bit, write out a C expression that will
extract this new flag from header

26

