WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

. WHEN Wil WE FORGET?

Memory Allocation | GASED oW UG (NS GLRERY
CSE 351 Spring 2022 NN POULATON FROTECTON
Instructor: TS FROM BEoRe Ak Sox
Ruth Anderson B(YETEF\QS m”[%ﬁ&%ﬂﬁmﬂs o
Teaching Assistants: 2006 | AETRN OF e JELY RELEPSE.
Melissa Birchfield 207 | THE FIRST APRE MACINTSH,
Jacob Christy 2018 | New (xe
Alena Dickmann 22;2 m
Kyrie Dowling 221 | BLACK MONDAY
Ellis Haker 2022 | THE ReEPGAN PRESIDENCY
Maggie Jiang 275 | THE BERUN WAL
Diva Joy 2024 | HAMMERTME

2025 | THE SOVIET UNION
Anirudh Kumar 20% | THE LA RIOTS
Jim Limprasert 2027 | [ORENA BOBRITT
Armin Magness 128 | THE FORREST” GUMP RELEASE.
Hamsa Shankar gz ;HES\?:NND;NT:?DE
Dara Stotland 3% | ATIME REFORE FACEROK
Jeffery Tian 2039 | VRY's Z LovE THE Ds
Assaf Vayner 2040 | HORRICANE KATRINA
Tom Wa o | T2
An_gela Xu Adapted from ANYTHING B IBARRASSING
Effie Zheng https://xkcd.com/1093/ 2 | You po DAY

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Relevant Course Information

+» hw21 due Friday (5/20)
+» Lab 4 due Friday (5/20)

" Cache parameter puzzles and code optimizations

+» hw22 due Monday (5/23)
+» hw24 due Wednesday (5/25)
% Lab 5 (on Mem Alloc) coming soon!

= Will want to look at readings for next week to get started
" Can be submitted at most ONE day late. (Sun 6/05)

WA UNIVERSITY of WASHINGTON

Roadmap

L24: Memory Allocation |

CSE351, Spring 2022

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

’ |

C: Java:
car *c = malloc(sizeof (car)); Car ¢ = new Car();
c->miles = 100; c.setMiles (100) ;
c->gals = 17; c.setGals (17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG() ;
Assembly get mpg:
. pushg srbp
language' movq $rsp, %rbp
Popg srbp
ret iy
Machine 0111010000011000
code: 100011010000010000000010
’ 1000100111000010
110000011111101000011111
Computer

system:

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Reading Review

+» Terminology:
"= Dynamically-allocated data: malloc, free

= Allocators: implicit vs. explicit allocators, heap blocks,
implicit vs. explicit free lists

" Heap fragmentation: internal vs. external

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Multiple Ways to Store Program Data

+ Static global dataf—\
pint array[1024];
ff——\

" Fixed size at compile-time

= Entire lifetime of the program | int* foo(int n) |

int tmp;
(loaded from executable) s T P 1 (n] ;
_>in ocal arrayl[n];

= Portion is read-only

(e.g. string literals) int* dyn =
(int*)malloc(n*sizeof (int)) ;
« Stack-allocated data return dyn4%

}

" Local/temporary variables

Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

<~ Dynamic (heap) data
= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

CSE351, Spring 2022

WA UNIVERSITY of WASHINGTON L24: Memory Allocation |

Memory Allocation

Dynamic memory allocation
" |ntroduction and goals

*

= Allocation and deallocation (free)
" Fragmentation

Explicit allocation implementation

*

" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

» Implicit deallocation: garbage collection
» Common memory-related bugs in C

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Dynamic Memory Allocation (Review)

+» Programmers use dynamic memory allocators to -
acquire virtual memory at run time User stack

® For data structures whose size J I
/_\.—’7
H

(or lifetime) is known only at runtime eap (viamalloc)

" Manage the heap of a process’ Unini -Dss)

virtual memorv: Initialized data (. data)
y: Program text (. text)

2 Types of allocators

? Explicit allocator: programmer allocates and frees space
Example: malloc and freeinC

= Implicit allocator: programmer only allocates space (no free)

- Example: garbage collection i CamI and LISp
Y ,

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Dynamic Memory Allocation

2 AIIocator organizes heap as a collection of variable-
sized bfa ks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too; User stack
ignored here) t ‘
- =y— Top of heap
[Heap (viamalloc) (brk ptr)

— Uninitialized data (.. bssr_'
Initialized data (. data)
Program text (. text)

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Allocating Memory in C (Review)

+ Needto #include <stdlib.h>
+ vold* malloc(size t size)

" Allocates a continuous block of size bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
Returns NULL if allocation failed (also sets errno) or size==

= Different hlocks not-necessarily adjacent
+» @Good practices:
Wy ptr = (int*) malloc(n*sizeof (int));

S

sizeof makes code more portable

- voidx isimplicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Allocating Memory in C (Review)

«+ Needto #include <stdlib.h>

+ vold* malloc(size t size)
= Allocates a continuous block of size bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL
indicates failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

« Related functions:]
" void* calloc(size_t nitems, size t size)
- “Zeros out” allocated block

" void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)

" void* sbrk(intptr t increment) \

Used internally by allocators to grow or shrink the heap
10

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Freeing Memory in C (Review)

«+ Needto #include <stdlib.h>

. . doesn"l’ dr\ansc the PbmJ(ef.'
0:0 VOld free (VOld* ﬁ— (y\o\,, Pom'\é +L> Aeﬁllo(&\’ea\ MEMDVy)

= Releases whole block pointed to by p to the pool of available memory

= Pointer p must be the address originally returned bym/c/realloc
(i.e. beginning of the block), otherwise system exception raised

"= Don’t call free on a block that has already been released

11

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

t\-g:-\,eq«(mee&

° ° Staek 2
Memory Allocation Example in C T’%YQQ
P[' ‘| / ‘l
void foo (int ﬁ, int.?n { _Jdﬁﬁlz‘ggql
int i, *p; ~— 1 —
@ p = (int*) malloc(n*sizeof (int)); /* allocate blockof nints */ +m
if (p == NULL) { /* check for allocation error */
perror ("malloc") ;é—Pr-‘h‘h message related to errno
exit (0) ;
}
for (i=0; i<n; i++) /* initialize int array */
pli] = 1i;

/* add space for m ints to end of p block */
ey, p = (int*) realloc(p, (ntm) *sizeof (int)) ;

if (p == NULL) { - /* check for allocation error */
perror ("realloc");
exit (0) ;

}

for (i=n; 1 < n+m; 1i++) /* initialize new spaces */
pli] = 1;

for (i=0; i<n+m; 1++) /* print new array */
printf ("$d\n", plil):;

free (p); /* freep */

————

12

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

=1 word = 8 bytes

Notation =

+» We will draw memory divided into words
" Each word is 64 bits = 8 bytes

" Allocations will be in sizes that are a multiple of words
(i.e. multiples of 8 bytes)

"= Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook &)

/
Heap :
L ¢ J
T |
Allocated block Free block
— e
(4 words) (3 words) Free word
32 Lykeg 24 bytes

Allocated word

13

WA UNIVERSITY of WASHINGTON L24: Memory Allocation |

CSE351, Spring 2022

. = 8-byte word
Allocation Example
NS——
pl = malloc (32)
p2 = malloc (40)
p3 = malloc (48) Fﬁ
\) AY S N—"N
free (p2)
’_/a\\et,gw\; oNn G\Ho(o\'fcr\/‘
pl'acemen

p4 = malloc(1l6)

malhe(32)

Polfcy ,‘J

14

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Implementation Interface (Review)

+ Applications
= Can issue arbitrary sequence of malloc and free requests

= Must never access memory not currently allocated

Must never free memory not currently allocated
« Also must only use free with previously malloc’ed blocks

+ Allocators
= Can’t control number or size of allocated blocks
" Must respond immediately tomalloc (cant reoder or bctfer)
= Must allocate blocks from free memory Cblscks cant overlap)
" Must align blocks so they satisfy all alignment requirements
= Can’t move the allocated blocks (dedrymestatinm nd! allgme &)

o) loreal Vour Pd\“*e“ :
15

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Performance Goals (Review)

+» @oals: Given some sequence of malloc and free
requests Ry, Ry, ..., Ry, ..., R,,_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

N/

‘7
1) Throughput Go {ast
"= Number of completed requests per unit time

= Example:

« If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

16

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Performance Goals

+ Definition: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R; has completed, the aggregate payload P,
is the sum of currently allocated payloads

+ Definition: Current heap size H,,

= Assume Hj;, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

W\
2) Peak Memory | UtiIization ™Minl Coretu ”
= Defined as Uy, = (maxP)/H,, after k+1 requests

" Goal: maximize utilization for a sequence of requests
= Why is this hard? And what happens to throughput?

17

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Fragmentation (Review)

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

" Two types: internal and external

+» Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

18

WA UNIVERSITY of WASHINGTON L24: Memory Allocation |

CSE351, Spring 2022

Internal Fragmentation

+» For a given block, internal fragmentation occurs if

payload is smaller than the block msllac (13)
=

N

Internal Internal

fragmentation l ' K\ 'paw_ 17’3@1('} T fragmentation
TR ~

+ Causes: —_ J !

= Padding for alignment purpos& e
= QOverhead of maintaining{heap dafz;'structuresl(inside block,
outside payload)

= Explicit policy decisions (e.g. return a big block to satisfy a
small request) Faster dhrahpet H sl indidually size every blook

+» Easy to measure because only depends on past
requests

19

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

= 8-byte word

External Fragmentation

+ For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
" That is, the aggregate payload is non-continuous

= Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

pl = malloc (32)

p2 = malloc (40)

pP3 = malloc (48)

free (p2)

—
P4 = malloc (48) Oh no! (What would happen now?)

+» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become

problematic
20

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Polling Question

+» Which of the following statements is FALSE?
= Vote in Ed Lessons

TA Temporary arrays should not be allocated on the
Heap shoWd &lloccte on the Stack

—~ B. mallocreturns an address ofa|| block that is
i I allocates only; mo intializodion
filled with random data “ " ™" tializod

\ C. Peak memory utilization is a measure of both

ceqcle (o6
internal and external fragmentation <422~

? D. An allocation failure will cause your program to
Jus‘t returns NULL

stop

21

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Implementation Issues

+» How do we know how much memory to free given
just a pointer?

to (Xo\y

+» How do we keep track of the free blocks?
+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

next lectwre

+ How do we reinsert a freed block into the heap?

22

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
- This word is often called the header field or header

—_—-—

= Requires an extra word for every allocated block

ceturneh oddress points
Pp0< h start of Py lud

|
pO0 = malloc (32) 40
block size data

(nd size of pay‘MJ)

free (p0)

Ls reu header af P8,
Lree Hht much S poce

23

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

= 8-byte word (free)

Keeping Track of Free Blocks _ 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

— — iy 1 -
- S P ~ o - =~

= ' O
40 32 48 16

—
——t

add pb'm‘*ek
2) Explicit free list among only the free blocks, using pointers

rend (\iv\\ce& \(‘\’!>
pom‘\‘cr
40 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
24

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022
Gdadreys is mublige sF §=051000

o o o e.g. with 8-byte alignment,
ImphClt Free LIStS possible values for size:
1 werd n 00001000 = 8 bytes
N i 00010000 = 16 bytes
+ For each block we need: size, is-allocated? | 00011000 = 24 bytes

= Could store using two words, but wasteful - 4

+ Standard trick
= If blocks are aligned, some low-order bits of size are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

= When reading size, must remember to mask out this bit!

8 bytes
N
//—\ —
Formatof = iz aa = 1: allocated block If x is first word (header):
allocated and a=0: free block g+
free blocks: X = size | a;
payload size: block size (in bytes)

payload: application data
optional (allocated blocks only) size = x & ~1;
padding

25

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2022

Header Questions

+» How many “flags” can we fit in our header if our

allocator uses 16-byte alighment?
0\” W‘WH‘P‘CJ 0'(' lb ‘\a/v(lw‘\' Ll L.qj 08 Zecoy - lé: OlolOOOD

4 flagg

e

+ If we placed a new “flag” in the second least
significant bit, write out a C expression that will

extract this new flag from header
two steps: (0 mask ost b ®
(D shitt b LSRR ©
/ N\
U
(heder &2) 7L (hesder > 1) b 1

26

