
CSE351, Spring 2022L20: Processes

Processes
CSE 351 Spring 2022
Instructor: Teaching Assistants:

Ruth Anderson Melissa Birchfield Jacob Christy Alena Dickmann

Kyrie Dowling Ellis Haker Maggie Jiang

Diya Joy Anirudh Kumar Jim Limprasert

Armin Magness Hamsa Shankar Dara Stotland

Jeffery Tian Assaf Vayner Tom Wu

Angela Xu Effie Zheng

http://xkcd.com/1854/

http://xkcd.com/1854/

CSE351, Spring 2022L20: Processes

Relevant Course Information

 Lab 3 due Wednesday (5/11)

 hw17 due Friday (5/13)

 Don’t wait too long, this is a BIG hw

 hw19 due Monday (5/16)

 Lab 4 preparation

 Lab 4 due Friday (5/20) - coming soon!

 Cache parameter puzzles and code optimizations

2

CSE351, Spring 2022L20: Processes

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2022L20: Processes

Reading Review

 Terminology:

 Exceptional control flow, event handlers

 Operating system kernel

 Exceptions: interrupts, traps, faults, aborts

 Processes: concurrency, context switching, fork-exec model,
process ID

4

CSE351, Spring 2022L20: Processes

Leading Up to Processes

 System Control Flow

 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

5

CSE351, Spring 2022L20: Processes

Control Flow

 So far: we’ve seen how the flow of control changes
as a single program executes

 Reality: multiple programs running concurrently

 How does control flow across the many components of the
system?

 In particular: More programs running than CPUs

 Exceptional control flow is basic mechanism used for:

 Transferring control between processes and OS

 Handling I/O and virtual memory within the OS

 Implementing multi-process apps like shells and web servers

 Implementing concurrency
6

CSE351, Spring 2022L20: Processes

Control Flow

 Processors do only one thing:

 From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

7

<startup>
instr1

instr2

instr3

…
instrn

<shutdown>

Physical control flow

time

CSE351, Spring 2022L20: Processes

Altering the Control Flow

 Up to now, two ways to change control flow:
 Jumps (conditional and unconditional)

 Call and return

 Both react to changes in program state

 Processor also needs to react to changes in system state
 Unix/Linux user hits “Ctrl-C” at the keyboard

 User clicks on a different application’s window on the screen

 Data arrives from a disk or a network adapter

 Instruction divides by zero

 System timer expires

 Can jumps and procedure calls achieve this?

 No – the system needs mechanisms for “exceptional” control flow!

8

CSE351, Spring 2022L20: Processes

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
 Exceptions

• Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

• Implemented using a combination of hardware and OS software

 Higher level mechanisms
 Process context switch

• Implemented by OS software and hardware timer

 Signals

• Implemented by OS software

• We won’t cover these – see CSE451 and CSE/EE474

9

CSE351, Spring 2022L20: Processes

Exceptions (Review)

 An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)

 Kernel is the memory-resident part of the OS

 Examples: division by 0, page fault, I/O request completes, Ctrl-C

 How does the system know where to jump to in the OS?
10

User Code OS Kernel Code

exception
exception processing by
exception handler, then:
• return to current_instr,
• return to next_instr, OR
• abort

current_instr
next_instr

event

CSE351, Spring 2022L20: Processes

Exception Table

 A jump table for exceptions (also called Interrupt Vector Table)
 Each type of event has a unique

exception number 𝑘

 𝑘 = index into exception table
(a.k.a interrupt vector)

 Handler 𝑘 is called each time
exception 𝑘 occurs

11

0
1

2
...

n-1

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

This is extra
(non-testable)

material

CSE351, Spring 2022L20: Processes

Exception Table (Excerpt)

12

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS-defined Interrupt or trap

This is extra
(non-testable)

material

CSE351, Spring 2022L20: Processes

Leading Up to Processes

 System Control Flow

 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

13

CSE351, Spring 2022L20: Processes

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin(s) (wire into CPU)

 After interrupt handler runs, the handler returns to “next” instruction

 Examples:

 I/O interrupts

• Hitting Ctrl-C on the keyboard

• Clicking a mouse button or tapping a touchscreen

• Arrival of a packet from a network

• Arrival of data from a disk

 Timer interrupt

• Every few milliseconds, an external timer chip triggers an interrupt

• Used by the OS kernel to take back control from user programs

14

CSE351, Spring 2022L20: Processes

Synchronous Exceptions (Review)

 Caused by events that occur as a result of executing an
instruction:
 Traps

• Intentional: transfer control to OS to perform some function

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

 Faults

• Unintentional but possibly recoverable

• Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

• Either re-executes faulting (“current”) instruction or aborts

 Aborts

• Unintentional and unrecoverable

• Examples: parity error, machine check (hardware failure detected)

• Aborts current program

15

CSE351, Spring 2022L20: Processes

System Calls

 Each system call has a unique ID number

 Examples for Linux on x86-64:

16

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

CSE351, Spring 2022L20: Processes

Traps Example: Opening File

 User calls open(filename, options)

 Calls __open function, which invokes system call instruction syscall

17

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2

e5d7e: 0f 05 syscall # return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code OS Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

CSE351, Spring 2022L20: Processes

Fault Example: Page Fault

 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

 Page fault handler must load page into physical memory

 Returns to faulting instruction: mov is executed again!

 Successful on second try
18

int a[1000];

int main () {

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault

Create page and
load into memoryreturns

movl
handle_page_fault:

CSE351, Spring 2022L20: Processes

Fault Example: Invalid Memory Reference

 Page fault handler detects invalid address

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”
19

int a[1000];

int main() {

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address

movl

signal process

handle_page_fault:

CSE351, Spring 2022L20: Processes

Processes

 Processes and context switching

 Creating new processes
 fork(), exec*(), and wait()

 Zombies

20

CSE351, Spring 2022L20: Processes

Process 1

What is a process ? (Review)

21

CPU

Registers %rip

Memory

Stack

Heap

Code

Data

Disk

Chrome.exe

It’s an illusion!

CSE351, Spring 2022L20: Processes

What is a process? (Review)

 Another abstraction in our computer system

 Provided by the OS

 OS uses a data structure to represent each process

 Maintains the interface between the program and the
underlying hardware (CPU + memory)

 What do processes have to do with exceptional
control flow?

 Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

 What is the difference between:

 A processor? A program? A process?

22

CSE351, Spring 2022L20: Processes

Processes (Review)

 A process is an instance of a running program

 One of the most profound ideas in computer science

 Process provides each program with two key
abstractions:

 Logical control flow
• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

 Private address space
• Each program seems to have exclusive use of main memory

• Provided by kernel mechanism called virtual memory

23

CPU

Registers

Memory

Stack

Heap

Code
Data

CSE351, Spring 2022L20: Processes

What is a process?

24

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 2

Process 3

Process 4
Process 1

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

It’s an illusion!

CSE351, Spring 2022L20: Processes

What is a process?

25

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 1

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 2

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 3

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 4

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Operating
System

It’s an illusion!

CSE351, Spring 2022L20: Processes

Multiprocessing: The Illusion

 Computer runs many processes simultaneously

 Applications for one or more users
• Web browsers, email clients, editors, …

 Background tasks
• Monitoring network & I/O devices

26

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CSE351, Spring 2022L20: Processes

Multiprocessing: The Reality

 Single processor executes multiple processes concurrently
 Process executions interleaved, CPU runs one at a time

 Address spaces managed by virtual memory system (later in course)

 Execution context (register values, stack, …) for other processes saved in
memory 27

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Spring 2022L20: Processes

Multiprocessing (Review)

 Context switch
1) Save current registers in memory

28

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Spring 2022L20: Processes

Multiprocessing (Review)

 Context switch
1) Save current registers in memory

2) Schedule next process for execution

29

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Spring 2022L20: Processes

Multiprocessing (Review)

30

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

 Context switch
1) Save current registers in memory

2) Schedule next process for execution

3) Load saved registers and switch address space

CSE351, Spring 2022L20: Processes

Multiprocessing: The (Modern) Reality

 Multicore processors

 Multiple CPUs (“cores”) on single chip

 Share main memory (and some of the
caches)

 Each can execute a separate process

• Kernel schedules processes to cores

• Still constantly swapping processes

31

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CPU

Registers

CSE351, Spring 2022L20: Processes

Concurrent Processes

 Each process is a logical control flow

 Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

 Otherwise, they are sequential

 Example: (running on single core)

 Concurrent: A & B, A & C

 Sequential: B & C

32

Process A Process B Process C

time

Assume only one CPU

CSE351, Spring 2022L20: Processes

User’s View of Concurrency

 Control flows for concurrent processes are physically
disjoint in time

 CPU only executes instructions for one process at a time

 However, the user can think of concurrent processes
as executing at the same time, in parallel

33

Assume only one CPU

Process A Process B Process C

ti
m

e

Process A Process B Process C

User View

CSE351, Spring 2022L20: Processes

Context Switching

 Processes are managed by a shared chunk of OS code
called the kernel
 The kernel is not a separate process, but rather runs as part of a user

process

 In x86-64 Linux:
 Same address in each process

refers to same shared
memory location

34

Assume only one CPU

CSE351, Spring 2022L20: Processes

Context Switching (Review)

 Processes are managed by a shared chunk of OS code
called the kernel
 The kernel is not a separate process, but rather runs as part of a user

process

 Context switch passes control flow from one process to
another and is performed using kernel code

35

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

Assume only one CPU

CSE351, Spring 2022L20: Processes

Processes

 Processes and context switching

 Creating new processes
 fork() and exec*()

 Ending a process
 exit(), wait(), waitpid()

 Zombies

36

CSE351, Spring 2022L20: Processes

Process 2

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs

37

Chrome.exe

Process 1

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

fork()

exec*()

CSE351, Spring 2022L20: Processes

Creating New Processes & Programs

 fork-exec model (Linux):

 fork() creates a copy of the current process

 exec*() replaces the current process’ code and address
space with the code for a different program
• Family: execv, execl, execve, execle, execvp, execlp

 fork() and execve() are system calls

 Other system calls for process management:
 getpid()

 exit()

 wait(), waitpid()

38

CSE351, Spring 2022L20: Processes

fork: Creating New Processes

 pid_t fork(void)

 Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

 Returns 0 to the child process

 Returns child’s process ID (PID) to the parent process

 Child is almost identical to parent:
 Child gets an identical

(but separate) copy of the
parent’s virtual address
space

 Child has a different PID
than the parent

 fork is unique (and often confusing) because it is called once
but returns “twice”

39

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

CSE351, Spring 2022L20: Processes

Understanding fork()

40

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

CSE351, Spring 2022L20: Processes

Understanding fork()

41

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

fork_ret = Y

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

fork_ret = 0

CSE351, Spring 2022L20: Processes

Understanding fork()

42

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

hello from parent hello from child

Which one appears first?

fork_ret = Y fork_ret = 0

CSE351, Spring 2022L20: Processes

Summary

 Exceptions

 Events that require non-standard control flow

 Generated asynchronously (interrupts) or synchronously
(traps and faults)

 After an exception is handled, either:
• Re-execute the current instruction

• Resume execution with the next instruction

• Abort the process that caused the exception

 Processes

 Only one of many active processes executes at a time on a
CPU, but each appears to have total control of the processor

 OS periodically “context switches” between active processes

43

