L19: Caches IV

WA UNIVERSITY of WASHINGTON

CSE351, Spring 2022

Caches IV
CSE 351 Spring 2022
Instructor: Teaching Assistants:

Ruth Anderson Melissa Birchfield Jacob Christy Alena Dickmann

Ellis Haker

Kyrie Dowling
Diya Joy

Armin Magness

|
O

Anirudh Kumar

Hamsa Shankar

Maggie Jiang
Jim Limprasert
Dara Stotland

\

Jeffery Tian Assaf Vayner Tom Wu
Angela Xu Effie Zheng
WHATS THiS? | HUH? T ALWAYS THOUGHT THE | HOW? YOURE ON | | SHOULD THE CoRDBE | | WHAT IF SOMEONE TRIFS ON IT?
CLOUD WS A HUGE, AMORPHOUS | A CPBLE MODEM. | | STRETCHED ACROSS WHO WOULD WANT T Do THAT?
NETWORK, OF SERVERS SOMEWHERE. THE RootM, LIKE THIST (IT SOUNDS UNPLERSANT,
OF CoUR<E. IT | | UH. SOMETIMES PEORIE (
THE CLOoUD. YERH, BUT EVERTONE BXSs |2 THERES A LOT HAS TOREACH | | DO STUFF BY ACCIDENT.

SERVER TME FROM EVERDNE |~ OF CACHING, THE SERVER, T DONT THINK
‘ ELSE. N THE END, THE(RE AND THE SERVER 5 I KNOW ANYEODY
3 ALL GETTNG T HERE., IS OVER THERE. LIKE. THAT,

O O)

JA

http://xkcd.com/908/

WA UNIVERSITY of WASHINGTON L19: Caches IV

Relevant Course Information

+» hw16 due Monday (5/09)
+» Lab 3 due Wednesday (5/11)
+» hw17 due Friday (5/13)

" Don’t wait too long, this is a BIG hw

+» hw19 due Monday (5/16)

" |lab 4 preparation

% Lab 4 coming soon!

" Cache parameter puzzles and code optimizations

CSE351, Spring 2022

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Reading Review

+» Terminology:
'@rite-hit policies: write-back, write-through
=Write-miss policies: write allocate, no-write allocate
" Cache blocking

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

What about writes? (Review)

Multiple copies of data may exist:

= multiple levels of cache a ain memory

What to do on a write-hit? (oo /b alesdy i $)
y

= Write- through write immediately to next level
= Write- back —defer write to next level until line is evicted (replaced)

Must track which cache lines have been modified (“dirty bit”) <~ eﬁ;“.\/ m{f‘:‘aw%:.;k

. . _ ach@
What to do on a writeZmiss?) (Hock /dcta n? curently in) ;

= (Write allocate: (“fetch on write”) load into cache, then execute the
write-hit policy

J
0‘0

X/
0‘0

J
0‘0

- Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

ical cach
a—\- gi\(mMisS
Write- back + Write allocate,|usually

= Write-through + No-write allocate, occasionally

<g;,

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Write-back, Write Allocate Example

Note: While unrealistic, this example assumes that all requests have
offset 0 and are for a block’s worth of data.

irty Tag Block Contents

Cache: 1| [o] [G (OxBEEF)
4

There is only one set in this tiny cache,

so the tag is the entire block number! nst dirty, so
thege Copies
Block - ére con sistent
Memory: Num :
F OxCAFE

G | [CoxBEEE>

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

QV\& hf+ — N mi S
Write-back, Write AIIocate Example
/_\\jf N?:cvﬁlé ;(86djdust uilnibloctkhnumlnst;eaq |
1) 0w $OXFACE, (F) of fu e address to keep the example simple

Write Miss!
Valid Dirty Tag Block Contents

E Q)&C A=

Cache: 1| 1o] & OZ&BEET\

\os: -
@)STOCC: Step 1: Bring F into
cache
Block X

Memory: Num Ay
F OxCAFE

G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Write-back, Write Allocate Example

1) mov SOxFACE, (F)

Write Miss O write data

i\f\‘l’D b‘ DCk

Valid Dirty Tag Block Contents

1 OxFACE

Cache: 1] @] [_F OxCAFE
>iflecent Step 1: Bring F into
/) cache
Block Step 2: Write
Memory: Num y/ OxFACE to cache
F only and set the
dirty bit

G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Write-back, Write Allocate Example

1) mov SOxFACE, (

Write Miss write o

rnto blo ck

Valid Dirty Tag Block Contents
OxFE

Cache: 1] & F OXEREE

Step 1: Bring F into

cache
Block Step 2: Write
Memory: Num OxFACE to cache
F OxCAFFE only and set the
. dirty bit

G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Write-back, Write Allocate Example

1) mov $OxFACE, (F) 2)mov $SOxFEED, (F)
Write Miss Write Hit!

Valid Dirty Tag Block Contents

Cache: 1| [A] F ORFACE
i

Step: Write
OxFEED to cache

only (and set the

Block

. dirty bit)
Memory: Num :
F 0xCAFE

G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Write-back, Write Allocate Example

1) mov $OxFACE, (F) 2)mov $OxFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1] |1 F OXFEED
Block X
Memory: Num :
F OxCAFE

G OxBEEF

10

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Write-back, Write Allocate Example

1) mov S$SOxXFACE, (F) 2)mov S$SOxXFEED, (F) 3) mov (G)/,_%SZ

Write Miss Write Hit Read Miss!
Valid Dirty Tag Block Contents
Cache: 1] | F OXFEED
[
0 evicted blOCk S 1: Wri F back
wos diehy tep 1: Write F bac
to memory since it
is dirty
Block X
Memory: Num

A\

ant

G OxBEEF

11

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

YDvex [I

Write-back, Write Allocate Ex

ple

3)mov (GQ), %ax

1) mov $OxFACE, (F) 2)mov S$SOxXFEED, (F

Write Miss Write Hit Read Miss
@ Co()y M‘h?
Valid Dirty Tag Block Contents % ax
4
Cache: 1| [o] [6 (OXBEEE
{) N\
new Buck is
ConsicTort uith
2 |o¢c\ new . H
memory Db‘o‘* Step 1: ertg F ba-ck
to memory since it
is dirty
Block .
Memory: Num : Step 2: Bring G into
F OXFEED the cache so that
: we can copy it into

P S — %aX
G (OxBEEF 2

12

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Cache Simulator

+» Want to play around with cache parameters and
policies? Check out our cache simulator!

" https://courses.cs.washington.edu/courses/cse351/cachesim/

+» Way to use:

= Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions
= Self-guided Cache Sim Demo posted along with Section 7

= Will be used in hw19 — Lab 4 Preparation

13

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Polling Question

+» Which of the following cache statements is\FALSE?
_ . — AT [ATH AT
Vote in Ed Lessons ——

c \%@ We can reduce colmpuuclksory n?\isiis IEy decri;easing
iz — ller block size pulls v bytes iuts
our block size >™* 7

On & ™SS

B. We can reduce conflict misses b\Lincreasing
associativity "oT OFonS T place botks before
~— — evictions oG

C. A write-back\cache will save time for code with

. . frequently-uged blocks rarel
good temporal locality on writes i «;ts, ls Feoer ek s /

o

D. A write-throughpcache will always match data

\Es, s ma i

with the memory hierarchy level below itgo«l S ddta
onsisTen
E. We're lost... e

14

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Optimizations for the Memory Hierarchy

+ Write code that has locality!
= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" Loop transformations

15

N
N
o
N
(o)}
£
—
[
w
-
0
™
L
7]
o

L19: Caches IV

WA UNIVERSITY of WASHINGTON

!

Matrix Multiplication

Example

16

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Matrices in Memory

«» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —

among cache blocks shown in red
17

L19: Caches IV

W unNIVERSITY

Naive Matrix Multiply

of WASHINGTON

CSE351, Spring 2022

for

(1 = 0;

Also read &

_O,

move along rows of A
1 < n;
move along columns of B
for (7 7 < n;
EACH k loop reads row of A,

write c(i1,7]) n times

it++)

Jt+)

col of B

for (k = 0; k < n; k++)
cli*n+]] += al[i*n+k] * bl[k*n+73];
TORY AU I ¥ LTI]
BUAe L) @ Read O Read 6>Read
—> 4= '
C(i,j) C(i,j) | Ali,:) |
. B — | B 4 ¢ Wl 5 i)
M — kK
b v ‘
oV, all K ¥l ows fov 1

(olg

18

WA UNIVERSITY of WASHINGTON L19: Caches IV

CSE351, Spring 2022

lgnoring
matrix

Cache Miss Analysis (Naive)

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache block size J = 8 AOUDL1ES &% nep clements per
CG\C\'\(O bIDC\’\
<% Cache size C < n (much smaller than n) @ —~

ey GSIU\MP lon

C A =—s\L
Mhdn gl
i ﬁ—z

+ Each |terat|oﬁ g}

~ B _

n on . —_ X

" — 4 n = —misses

8 — 8
(ow\rwv\\Sch/—jJ ‘Q)‘@ J ‘9y‘“r\e‘|'fw\€ \A&S&J‘\)
A s dood MHAHHHHH [e]) | e, WHodk hw been

j(va’rial (o(of\)\i‘}y ’v'ft%_ll_‘,l/“ e 21X Il kiked o of $
stride-1 87@1 |

d@r—""—__(19

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Cache Miss Analysis (Naive) ['3”0“”8]

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles
" Cache blocksize K =64 B =8 doubles

" Cachessize C < n (much smaller than n)

X £

« Each iteration:
n on . — X
" — 4 n =—misses
8 8
= Afterwards in cache:
(schematic) = X
re& SLOQ‘"()
H X! remw\ivj

inthe P 8 doubles wide 20

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Cache Miss Analysis (Naive) ['8n0fing]

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles
" Cache blocksize K =64 B =8 doubles

" Cachessize C < n (much smaller than n)

« Each iteration:

on
- —+n = — misses
8 8

1
X

. TL
« Total misses: —

/'||

once per product matrix element
21

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

% Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:
A A

@y Qip) Qg3 Gy4
A =92 G22.10z3 Godf _ [An A1
X317 032 A3z Q34| Ay Ao,

Qg1 Q4 ;aaaA_ e

(AllBll +A12821) (A11812 ' A12B22)
(A21Bll +A22821) (A21812 .2 AZZBZZ)

], with B defined similarly.

AB=[

22

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

This is extra
Linear Algebra to the Rescue (2) [(non-testable)]

material

C11 C12 C13 C14 A11 A12 A13 A14 B11 B12 B13 B14

C23 C24 2A215/<2\g @/A24\ BZ1 /éZ\& BZS BZ4

C31 C32 C43 C34 A31 A32 A33 A34 B32 @ B33 B34

S

C41 C42 C43 C44 A41 A42 A43 A144 B41 [E42\ B43 B44

w

Matrices of size n X n, split into 4 blocks of size r (n=4r)
C,, =A, B, +AB,, + AyByy +A,,B,, = 24 A B,

+» Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called “cache blocking”

23

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Blocked Matrix Multiply Pods

+ Blocked version of the naive algorithm:

move by rxr BLOCKS now

for (1 = 0; 1 < n; i += 1)
for (3 = 0; 7 < n; J +t= 1) (oo(; over hlocle
for (k = 0; k < n; k += r) J rmatrce S

block matrix multiplication
gfor (ib = i; ib < i+r; ib++)
puthn) for (4b = §; db < J+r; Jb++)
for (kb = k; kb < k+r; kb++)
clib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

log

blogc matrices

" 1 = block matrix size (assume r divides n evenly)

24

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Cache Miss Analysis (Blocked) ['3”0””8]

matrix c

+» Scenario Parameters:
" Cache block size K =64 B = 8 doubles
" Cachessize C < n (much smaller than n)
" Three blocks M (r X r) fit into cache: 3r2 < C B

%ements per block, 8 per cacm n/r blocks
+ Each Block iteration: /W) DA

2
r .
" 5 Misses per block

2n r?
E X — =
8

r

>

n/r blocks in row and column

nr
4

25

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Cache Miss Analysis (Blocked) ['3”0””8]

matrix c

+» Scenario Parameters:
= Cache block size K = 64 B = 8 doubles
" Cachessize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

/r2 elements per block, 8 per cache block rn/erlOCk':
K3 Each/block iteration: M HEEEN —
72 — X B
" — misses per block —
8 P I
2n r* nr
m Y — =
r 8 4
n/r blocks in row and column N EREEN

= Afterwards in cache
(schematic)

1
X

26

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

. . lenorin
Cache Miss Analysis (Blocked) [snor g]
matrix c
+ Scenario Parameters:
" Cache block size K =64 B = 8 doubles
" Cachessize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C
/r2 elements per block, 8 per cache block rn/erlOCk':
K3 Each/block iteration: M HEEEN —
r¢ . — X B
" — Misses per block H
2n r* nr
X — = —
8

r 4
<_\ n/r blocks in row and column
«» Total misses:

nr 2 ; /8
CCx () = e

27

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Matrix Multiply Visualization

X X U\dm = AN S
+ Heren =100, C = 32 KiB, r = 30 N e
\0\0(,\é
N "Ve: Q
Blocked:

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

28

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”

" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.

" Can get most of the advantage with generic @
- Keep working set reasonably small (temporal locality) 9V€&+ 9&\%\'
- Use small strides (spatial locality) rales of thapmb !
- Focus on inner loop code

29

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Core i7 Haswell
1 2.1 GHz
The Memory Mountain o
256 KB L2 cache
Aggressive \& o 8 MB L3 cache

prefgtching ‘ 64 B block size
c 16000 +
S
£ _ 14000
L 212000
<€ 10000 ~— LI § gize exceeded
$E 8000 Ridges
(5] ™
€3 6000 I = of temporal
”__ locality
4000
2000 % $ Side ex(eed e(l
Slopes g |
of spatial A 39K
locality 128k

512k

2m

Stride (x8 bytes) m/ sﬁ’;’é’&‘;‘:’g)m sef si2e
dcwhﬁ S\“dul lb(&“-}y 311128m é«(veoSmj

30

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2022

Learning About Your Machine

<+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Example: cat /sys/devices/system/cpu/cpuO/cache/index*/size
+» Windows:
" wmic memcache get <query> (all valuesin KB)

" Example: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

31

