
CSE351, Spring 2022L18: Caches III

Caches III
CSE 351 Spring 2022
Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

CSE351, Spring 2022L18: Caches III

Relevant Course Information

 hw15 due Friday (5/06)

 Mid-quarter Survey due Saturday (5/07)

 hw16 due Monday (5/09)

 Lab 3 due Wednesday (5/11)

 You will have everything you need for this now!

 Some discussion in section this week

 Last part of hw15 (due Fri 5/06) is useful for Lab 3

 hw17 due next Friday (5/13)

 Don’t wait too long, this is a BIG hw

2

CSE351, Spring 2022L18: Caches III

Making memory accesses fast!

 Cache basics

 Principle of locality

 Memory hierarchies

 Cache organization

 Direct-mapped (sets; index + tag)

 Associativity (ways)

 Replacement policy

 Handling writes

 Program optimizations that consider caches

3

CSE351, Spring 2022L18: Caches III

Reading Review

 Terminology:

 Associativity: sets, fully-associative cache

 Replacement policies: least recently used (LRU)

 Cache line: cache block + management bits (valid, tag)

 Cache misses: compulsory, conflict, capacity

4

CSE351, Spring 2022L18: Caches III

Review: Direct-Mapped Cache

 Hash function: (block number)
mod (# of blocks in cache)

 Each memory address maps to
exactly one index in the cache

 Fast (and simpler) to find a block

5

Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 00

01 11

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Spring 2022L18: Caches III

Direct-Mapped Cache Problem

 What happens if we access the
following addresses?

 8, 24, 8, 24, 8, …?

 Conflict in cache (misses!)

 Rest of cache goes unused

 Solution?

6

Block Num Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 ??

01 ??

10

11 ??

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4

CSE351, Spring 2022L18: Caches III

Associativity

 What if we could store data in any place in the cache?
 More complicated hardware = more power consumed, slower

 So we combine the two ideas:
 Each address maps to exactly one set

 Each set can store block in more than one way

7

0

1

2

3

4

5

6

7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct-mapped fully associative

CSE351, Spring 2022L18: Caches III

Cache Organization (3)

 Associativity (𝐸): # of ways for each set

 Such a cache is called an “𝐸-way set associative cache”

 We now index into cache sets, of which there are 𝑆 = 𝐶/𝐾/𝐸

 Use lowest log2 𝐶/𝐾/𝐸 = 𝒔 bits of block address
• Direct-mapped: 𝐸 = 1, so 𝒔 = log2 𝐶/𝐾 as we saw previously

• Fully associative: 𝐸 = 𝐶/𝐾, so 𝒔 = 0 bits

8

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕) Index (𝒔) Offset (𝒌)

Note: The textbook
uses “b” for offset bits

CSE351, Spring 2022L18: Caches III

Example Placement

 Where would data from address 0x1833 be placed?

 Binary: 0b 0001 1000 0011 0011

9

𝒔 = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒌)𝒎-bit address: Index (𝒔)

𝒔 = log2 𝐶/𝐾/𝐸 𝒌 = log2 𝐾𝒕 = 𝒎–𝒔–𝒌

𝒔 = ? 𝒔 = ?

CSE351, Spring 2022L18: Caches III

Block Placement and Replacement

 Any empty block in the correct set may be used to store block
 Valid bit for each cache block indicates if data is valid (1) or garbage (0)

 If there are no empty blocks, which one should we replace?
 No choice for direct-mapped caches

 Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

10

Set V Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set V Tag Data

0

1

2

3

Set V Tag Data

0

1

2-way set associative 4-way set associative

CSE351, Spring 2022L18: Caches III

Polling Questions

 We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

 Vote in Ed Lessons

A. 2

B. 4

C. 8

D. 16

E. We’re lost…

 If addresses are 16 bits wide, how wide is the Tag
field?

11

CSE351, Spring 2022L18: Caches III

● ● ●

General Cache Organization (𝑆, 𝐸, 𝐾)

12

𝐸 = blocks (or lines) per set

𝑆 sets
= 2𝒔

set

line (block plus
management bits)

Cache size:
𝐶 = 𝐾 × 𝐸 × 𝑆 data bytes
(doesn’t include V or Tag)

● ● ●

● ● ●

● ● ●

●
●
●

●
●
●

●
●
●

cache

0 1 2 K-1● ● ●TagV

valid bit
𝐾 = bytes per block

CSE351, Spring 2022L18: Caches III

Notation Review

 We just introduced a lot of new variable names!

 Please be mindful of block size notation when you look at
past exam questions or are watching videos

13

Parameter Variable Formulas

Block size 𝐾 (𝐵 in book)

𝑀 = 2𝒎 ↔𝒎 = log2𝑀
𝑆 = 2𝒔 ↔ 𝒔 = log2 𝑆
𝐾 = 2𝒌 ↔𝒌 = log2𝐾

𝐶 = 𝐾 × 𝐸 × 𝑆
𝒔 = log2 𝐶/𝐾/𝐸
𝒎 = 𝒕 + 𝒔 + 𝒌

Cache size 𝐶

Associativity 𝐸

Number of Sets 𝑆

Address space 𝑀

Address width 𝒎

Tag field width 𝒕

Index field width 𝒔

Offset field width 𝒌 (𝒃 in book)

CSE351, Spring 2022L18: Caches III

Example Cache Parameters Problem

 1 KiB address space, 125 cycles to go to memory.
Fill in the following table:

14

Cache Size 64 B
Block Size 8 B

Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits

Index Bits
Offset Bits

AMAT

CSE351, Spring 2022L18: Caches III

Cache Read

15

0 1 2 𝐾-1TagV

𝒕 bits 𝒔 bits 𝒌 bits

Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
= 2𝒔

𝐸 = blocks/lines per set

𝐾 = bytes per block

CSE351, Spring 2022L18: Caches III

Example: Direct-Mapped Cache (𝐸 = 1)

16

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

𝒕 bits 0…01 100

Address of int:

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

find set

𝑆=2𝒔 sets

CSE351, Spring 2022L18: Caches III

Example: Direct-Mapped Cache (𝐸 = 1)

17

𝒕 bits 0…01 100

Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CSE351, Spring 2022L18: Caches III

Example: Direct-Mapped Cache (𝐸 = 1)

18

𝒕 bits 0…01 100

Address of int:

0 1 2 7TagV 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

CSE351, Spring 2022L18: Caches III

Example: Set-Associative Cache (𝐸 = 2)

19

𝒕 bits 0…01 100

Address of short int:

find set

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE351, Spring 2022L18: Caches III

0 1 2 7TagV 3 6540 1 2 7tagV 3 654

Example: Set-Associative Cache (𝐸 = 2)

20

𝒕 bits 0…01 100
compare both

valid? + match: yes = hit

block offset

Tag

2-way: Two lines per set
Block Size 𝐾 = 8 B

Address of short int:

CSE351, Spring 2022L18: Caches III

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

Example: Set-Associative Cache (𝐸 = 2)

21

𝒕 bits 0…01 100

valid? + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE351, Spring 2022L18: Caches III

Types of Cache Misses: 3 C’s!

 Compulsory (cold) miss
 Occurs on first access to a block

 Conflict miss
 Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot

• e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

 Direct-mapped caches have more conflict misses than
𝐸-way set-associative (where 𝐸 > 1)

 Capacity miss
 Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

 Note: Fully-associative only has Compulsory and Capacity misses

22

CSE351, Spring 2022L18: Caches III

Example Code Analysis Problem

 Assuming the cache starts cold (all blocks invalid) and sum, i,
and j are stored in registers, calculate the miss rate:

 𝑚 = 12 bits, 𝐶 = 256 B, 𝐾 = 32 B, 𝐸 = 2

23

#define SIZE 8
long ar[SIZE][SIZE], sum = 0; // &ar=0x800
for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

