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Relevant Course Information

+» Midterm due TONIGHT Wednesday 5/04 11:59pm
< hw15 due Friday (5/06)

+» Mid-quarter Survey due Saturday (5/07)

+» hw16 due Monday (5/09)
+» Lab 3 due Wednesday (5/11)

® You will have everything you need for this now!
= Some discussion in section this week

= Last part of hwl5 (due Fri 5/06) is useful for Lab 3

+» hw17 due next Friday (5/13)
" Don’t wait too long, this is a BIG hw
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An Example Memory Hierarchy

A =
<lns 5-10s a
registers -

1ns on-chip L1

Smaller, cache (SRAM)
faster,
costlier .

er bvte 5-10 ns off-chip L2 1-2 min
per by cache (SRAM)
Larger 100 ns main memory 15-30 min SOSY
slower, (DRAM) "
cheaper

er bvte 150,000 ns SSD 31 days
per by local secondary storage

10,028,00)0 ns Disk (local disks) 66 months = 5.5 years
ms
1-150 ms remote secondary storage
(distributed file systems, web servers)
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Memory Hierarchies (Review)

+» Some fundamental and enduring properties of
hardware and software systems:

" Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
« True for: registers €< cache, cache <> DRAM, DRAM & disk, etc.
= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully
" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

- For each level k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k+1
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An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
byt off-chip L2
er e
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger main memory
’

(DRAM) Main memory holds disk blocks

slower, . ;
retrieved from local disks
cheaper
per byte local secondary storage _ _
| I disk Local disks hold files
( ocal dis S) retrieved from disks on
remote network servers
remote secondary storage
(distributed file systems, web servers)
v
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An Example Memory Hierarchy

A

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

explicitly program-controlled
registers (e.g. refer to exactly %rax, %rbx)

on-chip L1
e (Ui program sees “memory”;
hardware manages caching

transparently

off-chip L2
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

remote secondary storage
(distributed file systems, web servers)
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Intel Core i7 Cache Hierarchy

Processor package

Regs
L1 L1
d-cache| |i-cache

L2 unified cache

Core 3
Regs
L1 L1
d-cache| |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

________________________

Main memory

CSE351, Spring 2022

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles
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Making memory accesses fast!

» Cache basics
» Principle of locality
» Memory hierarchies

» Cache organization

" Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

* Handling writes

0‘0

Program optimizations that consider caches
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Reading Review

+» Terminology:
= Memory hierarchy
" Cache parameters: block size (K), cache size (C)
= Addresses: block offset field (k bits wide)
" Cache organization: direct-mapped cache, index field
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Review Questions

+» We have a direct-mapped cache with the following
parameters:

= Block size of 8 bytes
= Cache size of 4 KiB

+» How many blocks can the cache hold?
+» How many bits wide is the block offset field?

+» Which of the following addresses would fall under
block number 3?

A. B. Ox1F C. 0x30 D. Ox38

10
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Cache Organization (1) [ o " for black o ]

uses “B” for block size

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

= Small example (K = 4 B):

Block O Block 1 Block 3
0x0 0x2 Ox4 0x6  l0x8 OxA 0xC OxE

start of Mem —

<« end of Mem

Ox1 0x3 0x5 0Ox7 0x9 OxB OxD OxF

11
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Note: The textbook
uses “B” for block size

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

12
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Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

« Offset field

" Low-order log,(K) = k bits of address tell you which byte
within a block

- (address) mod 2™ = n lowest bits of address
= (address) modulo (# of bytes in a block)

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

13
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Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

» Example:

" |f we have 6-bit addresses and block size K = 4 B, which
block and byte does 0x15 refer to?

14
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Cache Organization (2)

% Cache Size (C): amount of data the $ can store
" Cache can only hold so much data (subset of next level)
= Given in bytes (C) or number of blocks (C /K)
= Example: C =32 KiB =512 blocks if using 64-B blocks

+» Where should data go in the cache?

" We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
= Hash table!

15
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Hash Tables for Fast Lookup

Insert:
5

27
34
102
119

Apply hash function to map data
to “buckets”

©O© O J o O b= W DD P O

CSE351, Spring 2022

16
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Place Data in Cache by Hashing Address

Memory Cache
Block Num Block Data Index Block Data

o000 [ , | | 00 [ ;o ]

0001 I 01 1 Here K =4 B

0010 L 10 L —and C/K =4

oo11 [T o [ i

0100 T

0101 L :

0110 Map to cache index from block
L1 1

0111 I I number

1000 Lo

1001 [ 1 1 " Use nextlog,(C/K) = s bits

1812 —— = (block number) mod (# blocks in

1100 : : : cache)

1101 -

1110 L1

1111 B

17
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Place Data in Cache by Hashing Address

Memory Cache

Block Num Block Data Index Block Data _
o000 f . . | ~00 T
0001 11| 01 I 01 | HereK =48
0010 N 10 L and C/K =4
0011 L1 11 T .
0100 T
0101 L :
o110 [ Map to cache index from block
0111 | | | number
1000 Lo _ -
1001 L1 " | ets adjacent blocks fit in cache
oo f 1 1 simultaneously!
1011 L . . .
1100 L1 - Consecutive blocks go in consecutive
1101 L cache indices
1110 L1
1111 T

18
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Polling Question

+» 6-bit addresses, block size K =4 B, and our cache
holds S = 4 blocks.

+ A request for address Ox2A results in a cache miss.
Which index does this block get loaded into and
which 3 other addresses are loaded along with it?

= \/ote on Ed Lessons

19
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Place Data in Cache by Hashing Address

Memory Cache
Block Num Block Data Index Block Data _
0000 [T 11 o0 [T T
0001 o1 01 1 | HereK =48
0010 L 10 L and C/K =4
0011 L 11 L |
0100 BRER
0101 L .
|

o110 [IIEE Collision!
S L. = This might confuse the cache later
1000 Lo
e when we access the data

| | |
1010 ) ' 1 1 = Solution?
1011 oy
1100 o1
1101 -
1110 L1
1111 T

20
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Tags Differentiate Blocks in Same Index

Memory Cache
Block Num Block Data Index Tag Block Data
oooo [ T T1 »00 [00 T
0001 11 01 I Here K=4B
0010 L 10 01 L —and C/K =4
0011 L 11 o1 .
0100 T
oL L, Tag = rest of address bits
0110 I
oLiiop oL " [bits=m—s—k
1000 L
1001 | 4 1 ® Check this during a cache lookup
1010 Lo
1011 L
1100 T
1101 -
1110 -7
1111 B

21
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Checking for a Requested Address

+» CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # their phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\ J
|
Block Number

" Index field tells you where to look in cache
o field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: ¢ and s sizes will change based on hash function

22
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Cache Puzzle

+» Based on the following behavior, which of the
following block sizes is NOT possible for our cache?
" Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (14: miss), (15: hit), (16: miss)
« [Not in Ed Lessons]

A.

B. 8 bytes

C. 16 bytes

D. 32 bytes

E. We're lost...

23
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Summary: Direct-Mapped Cache

Memory Cache
Block Num Block Data Index Tag Block Data _
oofoof | , , | 00 [o00 T
00|01 111 01 11 111 Here K=48B
00|10 Lo 10 |o1 T — and C/K =4
oofrd | 4 4 11 [o1 1
01100 | | |
01{o1 L :
o1ld Hash function: (block number)
| | |
R b | L mod (# of blocks in cache)
10foof [ T T
wojoy [ 1 1 " Each memory address maps to
oo | 1 exactly one index in the cache
10|11
alod " Fast (and simpler) to find a block
11{01 -
11200 |} 4
11|11 11 1

24
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Direct-Mapped Cache Problem

Memory Cache
Block Num Block Data Index Tag Block Data
oofoof |, | 00 |22 T
00(01 I 01 ?7? I Here K =4 B
oojfrof [ P T I 10 T —andC/K =4
00|11 L 11 |22 Lo |
01|00 (| I
1o > What h f th
01l1d | o dl Nappens IT we access tne
oy f v 1 following addresses?
10lo0 [ T | |
10l01 T m 8, 24,8, 24,8, ..7
18 i? — = Conflict in cache (misses!)
| | |
11foof [ 1 a1 i = Rest of cache goes unused
11forf [T T |
1)1 [ 4 + Solution?
11|11 I I

25



