YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Caches Il

CSE 351 Spring 2022
Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy

Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian

Assaf Vayner
Tom Wu

Angela Xu

Effie Zheng

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Relevant Course Information

+» Midterm due TONIGHT Wednesday 5/04 11:59pm
< hw15 due Friday (5/06)

+» Mid-quarter Survey due Saturday (5/07)

+» hw16 due Monday (5/09)
+» Lab 3 due Wednesday (5/11)

® You will have everything you need for this now!
= Some discussion in section this week

= Last part of hwl5 (due Fri 5/06) is useful for Lab 3

+» hw17 due next Friday (5/13)
" Don’t wait too long, this is a BIG hw

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

An Example Memory Hierarchy

A =
<lns 5-10s a
registers -

1ns on-chip L1

Smaller, cache (SRAM)
faster,
costlier .

er bvte 5-10 ns off-chip L2 1-2 min
per by cache (SRAM)
Larger 100 ns main memory 15-30 min SOSY
slower, (DRAM) "
cheaper

er bvte 150,000 ns SSD 31 days
per by local secondary storage

10,028,00)0 ns Disk (local disks) 66 months = 5.5 years
ms
1-150 ms remote secondary storage
(distributed file systems, web servers)

YA/ UNIVERSITY of WASHINGTON L17: Caches Il

CSE351, Spring 2022

Memory Hierarchies (Review)

+» Some fundamental and enduring properties of
hardware and software systems:

" Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
« True for: registers €< cache, cache <> DRAM, DRAM & disk, etc.
= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully
" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

- For each level k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k+1

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
byt off-chip L2
er e
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger main memory
’

(DRAM) Main memory holds disk blocks

slower, . ;
retrieved from local disks
cheaper
per byte local secondary storage _ _
| I disk Local disks hold files
(ocal dis S) retrieved from disks on
remote network servers
remote secondary storage
(distributed file systems, web servers)
v

YA/ UNIVERSITY of WASHINGTON

L17: CacheslI CSE351, Spring 2022

An Example Memory Hierarchy

A

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

explicitly program-controlled
registers (e.g. refer to exactly %rax, %rbx)

on-chip L1
e (Ui program sees “memory”;
hardware manages caching

transparently

off-chip L2
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

remote secondary storage
(distributed file systems, web servers)

YA/ UNIVERSITY of WASHINGTON

L17: Caches i

Intel Core i7 Cache Hierarchy

Processor package

Regs
L1 L1
d-cache| |i-cache

L2 unified cache

Core 3
Regs
L1 L1
d-cache| |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

CSE351, Spring 2022

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Making memory accesses fast!

» Cache basics
» Principle of locality
» Memory hierarchies

» Cache organization

" Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

* Handling writes

0‘0

Program optimizations that consider caches

CSE351, Spring 2022

YA/ UNIVERSITY of WASHINGTON L17: Caches Il

Reading Review

+» Terminology:
= Memory hierarchy
" Cache parameters: block size (K), cache size (C)
= Addresses: block offset field (k bits wide)
" Cache organization: direct-mapped cache, index field

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Review Questions

+» We have a direct-mapped cache with the following
parameters:

= Block size of 8 bytes
= Cache size of 4 KiB

+» How many blocks can the cache hold?
+» How many bits wide is the block offset field?

+» Which of the following addresses would fall under
block number 3?

A. B. Ox1F C. 0x30 D. Ox38

10

YA/ UNIVERSITY of WASHINGTON L17: Caches Il

CSE351, Spring 2022

Cache Organization (1) [o " for black o]

uses “B” for block size

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

= Small example (K = 4 B):

Block O Block 1 Block 3
0x0 0x2 Ox4 0x6 l0x8 OxA 0xC OxE

start of Mem —

<« end of Mem

Ox1 0x3 0x5 0Ox7 0x9 OxB OxD OxF

11

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Note: The textbook
uses “B” for block size

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

12

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

« Offset field

" Low-order log,(K) = k bits of address tell you which byte
within a block

- (address) mod 2™ = n lowest bits of address
= (address) modulo (# of bytes in a block)

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

13

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g., 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

» Example:

" |f we have 6-bit addresses and block size K = 4 B, which
block and byte does 0x15 refer to?

14

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Cache Organization (2)

% Cache Size (C): amount of data the $ can store
" Cache can only hold so much data (subset of next level)
= Given in bytes (C) or number of blocks (C /K)
= Example: C =32 KiB =512 blocks if using 64-B blocks

+» Where should data go in the cache?

" We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
= Hash table!

15

YA/ UNIVERSITY of WASHINGTON L17: Caches Il

Hash Tables for Fast Lookup

Insert:
5

27
34
102
119

Apply hash function to map data
to “buckets”

©O© O J o O b= W DD P O

CSE351, Spring 2022

16

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Place Data in Cache by Hashing Address

Memory Cache
Block Num Block Data Index Block Data

o000 [, | | 00 [;o]

0001 I 01 1 Here K =4 B

0010 L 10 L —and C/K =4

oo11 [T o [i

0100 T

0101 L :

0110 Map to cache index from block
L1 1

0111 I I number

1000 Lo

1001 [1 1 " Use nextlog,(C/K) = s bits

1812 —— = (block number) mod (# blocks in

1100 : : : cache)

1101 -

1110 L1

1111 B

17

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Place Data in Cache by Hashing Address

Memory Cache

Block Num Block Data Index Block Data _
o000 f . . | ~00 T
0001 11| 01 I 01 | HereK =48
0010 N 10 L and C/K =4
0011 L1 11 T .
0100 T
0101 L :
o110 [Map to cache index from block
0111 | | | number
1000 Lo _ -
1001 L1 " | ets adjacent blocks fit in cache
oo f 1 1 simultaneously!
1011 L . . .
1100 L1 - Consecutive blocks go in consecutive
1101 L cache indices
1110 L1
1111 T

18

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Polling Question

+» 6-bit addresses, block size K =4 B, and our cache
holds S = 4 blocks.

+ A request for address Ox2A results in a cache miss.
Which index does this block get loaded into and
which 3 other addresses are loaded along with it?

= \/ote on Ed Lessons

19

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Place Data in Cache by Hashing Address

Memory Cache
Block Num Block Data Index Block Data _
0000 [T 11 o0 [T T
0001 o1 01 1 | HereK =48
0010 L 10 L and C/K =4
0011 L 11 L |
0100 BRER
0101 L .
|

o110 [IIEE Collision!
S L. = This might confuse the cache later
1000 Lo
e when we access the data

| | |
1010) ' 1 1 = Solution?
1011 oy
1100 o1
1101 -
1110 L1
1111 T

20

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Tags Differentiate Blocks in Same Index

Memory Cache
Block Num Block Data Index Tag Block Data
oooo [T T1 »00 [00 T
0001 11 01 I Here K=4B
0010 L 10 01 L —and C/K =4
0011 L 11 o1 .
0100 T
oL L, Tag = rest of address bits
0110 I
oLiiop oL " [bits=m—s—k
1000 L
1001 | 4 1 ® Check this during a cache lookup
1010 Lo
1011 L
1100 T
1101 -
1110 -7
1111 B

21

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Checking for a Requested Address

+» CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # their phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\ J
|
Block Number

" Index field tells you where to look in cache
o field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: ¢ and s sizes will change based on hash function

22

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Cache Puzzle

+» Based on the following behavior, which of the
following block sizes is NOT possible for our cache?
" Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (14: miss), (15: hit), (16: miss)
« [Not in Ed Lessons]

A.

B. 8 bytes

C. 16 bytes

D. 32 bytes

E. We're lost...

23

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Summary: Direct-Mapped Cache

Memory Cache
Block Num Block Data Index Tag Block Data _
oofoof | , , | 00 [o00 T
00|01 111 01 11 111 Here K=48B
00|10 Lo 10 |o1 T — and C/K =4
oofrd | 4 4 11 [o1 1
01100 | | |
01{o1 L :
o1ld Hash function: (block number)
| | |
R b | L mod (# of blocks in cache)
10foof [T T
wojoy [1 1 " Each memory address maps to
oo | 1 exactly one index in the cache
10|11
alod " Fast (and simpler) to find a block
11{01 -
11200 |} 4
11|11 11 1

24

YA/ UNIVERSITY of WASHINGTON L17: Caches I CSE351, Spring 2022

Direct-Mapped Cache Problem

Memory Cache
Block Num Block Data Index Tag Block Data
oofoof |, | 00 |22 T
00(01 I 01 ?7? I Here K =4 B
oojfrof [P T I 10 T —andC/K =4
00|11 L 11 |22 Lo |
01|00 (| I
1o > What h f th
01l1d | o dl Nappens IT we access tne
oy f v 1 following addresses?
10lo0 [T | |
10l01 T m 8, 24,8, 24,8, ..7
18 i? — = Conflict in cache (misses!)
| | |
11foof [1 a1 i = Rest of cache goes unused
11forf [T T |
1)1 [4 + Solution?
11|11 I I

25

