
CSE351, Spring 2022L16: Caches I

Memory & Caches I
CSE 351 Spring 2022
Instructor:
Ruth Anderson

Teaching Assistants:
Melissa Birchfield
Jacob Christy
Alena Dickmann
Kyrie Dowling
Ellis Haker
Maggie Jiang
Diya Joy
Anirudh Kumar
Jim Limprasert
Armin Magness
Hamsa Shankar
Dara Stotland
Jeffery Tian
Assaf Vayner
Tom Wu
Angela Xu
Effie Zheng

http://xkcd.com/1353/

Alt text: I looked at some of the data dumps from vulnerable sites, and
it was ... bad. I saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhäuser Gate. I should probably patch OpenSSL.

http://xkcd.com/1513/

CSE351, Spring 2022L16: Caches I

Relevant Course Information

 hw13 – due Monday 5/02

 Based on the next two lectures, longer than normal

 Midterm (take home, 5/02-5/04)

 Midterm review problems in section this week

 Released 11:59pm on Mon 5/02, due 11:59pm Wed 5/04

 See email sent to class, Ed Post, and exams page

 Lab 3 due Wed 5/11

 You will have everything you need for this now!

 Some discussion in section this week

 Last part of hw15 (due Fri 5/06) is useful for Lab 3

2

https://edstem.org/us/courses/21044/discussion/1441573
https://courses.cs.washington.edu/courses/cse351/22sp/exams/#midterm

CSE351, Spring 2022L16: Caches I

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2022L16: Caches I

Aside: Units and Prefixes (Review)

 Here focusing on large numbers (exponents > 0)

 Note that 103 ≈ 210

 SI prefixes are ambiguous if base 10 or 2

 IEC prefixes are unambiguously base 2

4

CSE351, Spring 2022L16: Caches I

How to Remember?

 Will be given to you on Final reference sheet

 Mnemonics

 There unfortunately isn’t one well-accepted mnemonic
• But that shouldn’t stop you from trying to come with one!

 Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

 Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

 xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
• https://xkcd.com/992/

 Post your best on Ed Discussion!

5

https://xkcd.com/992/

CSE351, Spring 2022L16: Caches I

Reading Review

 Terminology:

 Caches: cache blocks, cache hit, cache miss

 Principle of locality: temporal and spatial

 Average memory access time (AMAT): hit time, miss penalty,
hit rate, miss rate

6

CSE351, Spring 2022L16: Caches I

Review Questions

 Convert the following to or from IEC:

 512 Ki-books

 227 caches

 Compute the average memory access time (AMAT)
for the following system properties:

 Hit time of 1 ns

 Miss rate of 1%

 Miss penalty of 100 ns

7

CSE351, Spring 2022L16: Caches I

How does execution time grow with SIZE?

8

int array[SIZE];

int sum = 0;

for (int i = 0; i < 200000; i++) {

for (int j = 0; j < SIZE; j++) {

sum += array[j];

}

}

SIZE

Ex
e

cu
ti

o
n

 T
im

e

Plot:

CSE351, Spring 2022L16: Caches I

Actual Data

9

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

CSE351, Spring 2022L16: Caches I

Making memory accesses fast!

 Cache basics

 Principle of locality

 Memory hierarchies

 Cache organization

 Program optimizations that consider caches

10

CSE351, Spring 2022L16: Caches I

Processor-Memory Gap

11

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CSE351, Spring 2022L16: Caches I

Problem: Processor-Memory Bottleneck

12

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time)

CSE351, Spring 2022L16: Caches I

Problem: Processor-Memory Bottleneck

13

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

CSE351, Spring 2022L16: Caches I

Cache 💰

 Pronunciation: “cash”

 We abbreviate this as “$”

 English: A hidden storage space
for provisions, weapons, and/or treasures

 Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/I$) or data (d-cache/D$)

 More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, I/O cache, etc.)

14

CSE351, Spring 2022L16: Caches I

General Cache Mechanics (Review)

15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory

• Caches a subset of the blocks

CSE351, Spring 2022L16: Caches I

General Cache Concepts: Hit (Review)

16

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU

CSE351, Spring 2022L16: Caches I

General Cache Concepts: Miss (Review)

17

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
•Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU

CSE351, Spring 2022L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

18

CSE351, Spring 2022L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:

 Recently referenced items are likely
to be referenced again in the near future

19

block

CSE351, Spring 2022L16: Caches I

Why Caches Work (Review)

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:

 Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

 Items with nearby addresses tend
to be referenced close together in time

 How do caches take advantage of this?
20

block

block

CSE351, Spring 2022L16: Caches I

Example: Any Locality?

 Data:

 Temporal: sum referenced in each iteration

 Spatial: consecutive elements of array a[] accessed

 Instructions:

 Temporal: cycle through loop repeatedly

 Spatial: reference instructions in sequence

21

sum = 0;

for (i = 0; i < n; i++)

{

sum += a[i];

}

return sum;

CSE351, Spring 2022L16: Caches I

Locality Example #1

22

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

CSE351, Spring 2022L16: Caches I

Locality Example #1

23

Access Pattern:
stride = ?

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

1) a[0][0]

2) a[0][1]

3) a[0][2]

4) a[0][3]

5) a[1][0]

6) a[1][1]

7) a[1][2]

8) a[1][3]

9) a[2][0]

10) a[2][1]

11) a[2][2]

12) a[2][3]

CSE351, Spring 2022L16: Caches I

Locality Example #2

24

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

CSE351, Spring 2022L16: Caches I

Locality Example #2

25

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

M = 3, N=4

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]

2) a[1][0]

3) a[2][0]

4) a[0][1]

5) a[1][1]

6) a[2][1]

7) a[0][2]

8) a[1][2]

9) a[2][2]

10) a[0][3]

11) a[1][3]

12) a[2][3]

CSE351, Spring 2022L16: Caches I

Locality Example #3

 What is wrong
with this code?

 How can it be
fixed?

26

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] m = 0
m = 1

m = 2

CSE351, Spring 2022L16: Caches I

Locality Example #3

27

⋅ ⋅ ⋅

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

 What is wrong
with this code?

 How can it be
fixed?

Layout in Memory (M = ?, N = 3, L = 4)

a

[0]
[0]
[0]

a

[0]
[0]
[1]

a

[0]
[0]
[2]

a

[0]
[0]
[3]

a

[0]
[1]
[0]

a

[0]
[1]
[1]

a

[0]
[1]
[2]

a

[0]
[1]
[3]

a

[0]
[2]
[0]

a

[0]
[2]
[1]

a

[0]
[2]
[2]

a

[0]
[2]
[3]

a

[1]
[0]
[0]

a

[1]
[0]
[1]

a

[1]
[0]
[2]

a

[1]
[0]
[3]

a

[1]
[1]
[0]

a

[1]
[1]
[1]

a

[1]
[1]
[2]

a

[1]
[1]
[3]

a

[1]
[2]
[0]

a

[1]
[2]
[1]

a

[1]
[2]
[2]

a

[1]
[2]
[3]

76 92 108 124 140 156 172

CSE351, Spring 2022L16: Caches I

Cache Performance Metrics (Review)

 Huge difference between a cache hit and a cache miss

 Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

 Miss Rate (MR)

 Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

 Hit Time (HT)

 Time to deliver a block in the cache to the processor
• Includes time to determine whether the block is in the cache

 Miss Penalty (MP)

 Additional time required because of a miss

28

CSE351, Spring 2022L16: Caches I

Cache Performance (Review)

 Two things hurt the performance of a cache:

 Miss rate and miss penalty

 Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty

(abbreviated AMAT = HT + MR × MP)

 99% hit rate twice as good as 97% hit rate!

 Assume HT of 1 clock cycle and MP of 100 clock cycles

 97%: AMAT =

 99%: AMAT =
29

CSE351, Spring 2022L16: Caches I

Practice Question

 Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

 Which improvement would be best?

A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

30

CSE351, Spring 2022L16: Caches I

Can we have more than one cache?

 Why would we want to do that?

 Avoid going to memory!

 Typical performance numbers:

 Miss Rate
• L1 MR = 3-10%

• L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.

 Hit Time
• L1 HT = 4 clock cycles

• L2 HT = 10 clock cycles

 Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory

• Trend: increasing!

31

CSE351, Spring 2022L16: Caches I

An Example Memory Hierarchy

32

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Spring 2022L16: Caches I

Summary

 Memory Hierarchy

 Successively higher levels contain “most used” data from
lower levels

 Exploits temporal and spatial locality

 Caches are intermediate storage levels used to optimize
data transfers between any system elements with different
characteristics

 Cache Performance

 Ideal case: found in cache (hit)

 Bad case: not found in cache (miss), search in next level

 Average Memory Access Time (AMAT) = HT + MR × MP
• Hurt by Miss Rate and Miss Penalty

33

