W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflows
CSE 351 Spring 2022

Instructor: Teaching Assistants:
Ruth Anderson Melissa Birchfield Jacob Christy Alena Dickmann
Kyrie Dowling Ellis Haker Maggie Jiang
Diya Joy Anirudh Kumar Jim Limprasert
Armin Magness Hamsa Shankar Dara Stotland
Jeffery Tian Assaf Vayner Tom Wu
Angela Xu Effie Zheng
: * ‘ - [smP oumiwie Anp
ﬁ, FIND THE BALL! |

LOOK OUT! HE'S RIGHT THERE
' DONT BUN INTO— h

NO ONE LIKED MY NEW SPORTS SYSTEM, IN WHICH EACH PLAYER IS IN A SEPARATE
ARENA SHARING A SINGLE VIRTUAL BALL THAT THEY CANT SEE WHILE ONLINE
VIEWERS YELL INSTRUCTIONS, BUT IT LJAS FUN To WATCH WHILE IT LASTED.

http://xked.com/2291/

http://xkcd.com/2291/

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Relevant Course Information

+» Lab 2 (x86-64) due Friday (4/29)
= Since you are submitting a text file (defuser. txt), there
won’t be any Gradescope autograder output this time

+» hw1l3 — due Monday 5/02

= Based on the next two lectures, longer than normal
+» Midterm (take home, 5/02-5/04)

= Midterm review problems in section this week

= Released 11:59pm on Mon 5/02, due 11:59pm Wed 5/04
" See email sent to class, Ed Post, and exams page

+» Lab 3 coming soon!

= You will have everything you need by the end of this lecture

https://edstem.org/us/courses/21044/discussion/1441573
https://courses.cs.washington.edu/courses/cse351/22sp/exams/#midterm

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

Buffer Overflows

+~ Address space layout review
+ Input buffers on the stack
» Overflowing buffers and injecting code

+~ Defenses against buffer overflows

CSE351, Spring 2022

CSE351, Spring 2022

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

Review: General Memory Layout
“ZN-].

4

Stack
" Local variables (procedure context)

Heap
= Dynamically allocated as needed

" new,malloc (), calloc(), ..

Statically-allocated Data
= Read/write: global variables (Static Data)
= Read-only: string literals (Literals)

Code/Instructions
= Executable machine instructions
= Read-only

not drawn to scale

Stack

Heap

Static Data

Literals

Instructions

CSE351, Spring 2022

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

Memory Allocation Example

not drawn to scale

char big array[l1L<<24]; /* 16 MB
int global = 0;

int useless() { return 0; }

int main() {
void *pl, *p2;
int local = 0O;

pl = malloc (1L << 28); /* 256 MB
p2 = malloc (1L << 8); /* 256 B
/* Some print statements ... */

*/

x/
*/

Stack

Heap

Static Data

Where does everything go?

Literals

Instructions

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

not drawn to scale

Memory Allocation Example

char big array[1lL<<24]; /* 16 MB */
- Stack
int global = 0;
int useless!{) { return 0; }
int main{) {
void *pl, *p2; Heap
int local = 0;
pl =|malloc (1L << 28)—7+256MB—+—"
p2 =|malloc (1L << 8)7—7F256—B—+F Static Data
/* Some print statements /
}
Literals
Where does everything go?
Instructions

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

What Is a Buffer?

+~ A buffer is an array used to temporarily store data

+ You’'ve probably seen “video buffering...”

®" The video is being written into a buffer before being played

+ Buffers can also store user input

BUFFERING

W UNIVERSITY of WASHINGTON

L15: Buffer Overflows

CSE351, Spring 2022

Reminder: x86-64/Linux Stack Frame

+ Caller’s Stack Frame (
= Arguments (if > 6 args) for this call
+ Current/ Callee Stack Frame Caller <
Frame
= Return address
Pushed by call instruction L
= Old frame pointer (optional) Frame pointer
. srbp——m—

Caller-saved pushed before setting up

. Optional
arguments for a function call (Op)

Callee-saved pushed before using
long-term registers

Local variables
(if can’t be kept in registers)

“Argument build” area
(Need to call a function with >6
arguments? Put them here)

Stack pointer
TSP —>

Arguments
7,8, ..

Return Addr

Old rbp

Saved
Registers
+
Local
Variables

Argument
Build
(Optional)

W UNIVERSITY of WASHINGTON

L15: Buffer Overflows

CSE351, Spring 2022

Buffer Overflow in a Nutshell

+ C does not check array bounds
= Many Unix/Linux/C functions don’t check argument sizes

= Allows overflowing (writing past the end) of buffers (arrays)

+ “Buffer Overflow” = Writing past the end of an array

+ Characteristics of the traditional Linux memory layout
provide opportunities for malicious programs
= Stack grows “backwards” in memory

= Data and instructions both stored in the same memory

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflow in a Nutshell [o0
00

+ Stack grows down towards lower 00

addresses Return < 00
Address 00
40

+» Buffer grows up towards higher dd
addresses | bf

buf[7]

+ If we write past the end of the O
array, we overwrite data on the "o’
stack! =

lll
buf[0] e

No overflow © o

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

Buffer Overflow in a Nutshell

+ Stack grows down towards lower
addresses

+» Buffer grows up towards higher
addresses

+ If we write past the end of the
array, we overwrite data on the
stack!

Enter input: helloabcdef

Return
Address <

buf[7]

buf[0]

CSE351, Spring 2022

00

00

00

00

00

40

dd

bf

11

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflow in a Nutshell [o0
00

+ Stack grows down towards lower 00
Return 00

addresses Address < N0
lfl

+ Buffer grows up towards higher et
addresses N S
buf[7] o

A 'b!

+ If we write past the end of the g
array, we overwrite data on the ‘o’
stack! _
lll

buf[0] o

Buffer overflow! ®

12

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflow in a Nutshell

+ Buffer overflows on the stack can overwrite
“interesting” data

= Attackers just choose the right inputs

+ Simplest form (sometimes called “stack smashing”)

" Unchecked length on string input into bounded array causes
overwriting of stack data

" Try to change the return address of the current procedure

+ Why is this a big deal?

= |t was the #1 technical cause of security vulnerabilities

- #1 overall cause is social engineering / user ignorance
13

W UNIVERSITY of WASHINGTON

L15: Buffer Overflows

String Library Code

CSE351, Spring 2022

+» Implementation of Unix function gets ()

/* Get string from stdin */

char* p = dest;

while (¢ != EOF && c != '"\n')

}
*p = "\0';
return dest;

}

char* gets (char* dest) {
int ¢ = getchar();

{

*p+t+ = C;
c = getch;?7775“‘--~§§§§~

— pointer to start
of an array

————Same as:

= What could go wrong in this code?

14

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

String Library Code

+ Implementation of Unix function gets ()

/* Get string from stdin */
char* gets (char* dest) {

int ¢ = getchar();

char* p = dest;

while (c != EOF && c !'= '"\n') {
*p+t+ = C;
c = getchar ()

}

*p = '\0';

return dest;

}
= No way to specify limit on number of characters to read

+ Similar problems with other Unix functions:
" strcpy: Copies string of arbitrary length to a dst

= scanf, fscanf, sscanf, when given $s specifier .

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Vulnerable Buffer Code

/* Echo Line */

void echo () {
char buf([8]; /* Way too small! */
gets (buf) ;
puts (buf) ;

void call echo() {
echo () ;

}

unix> . /buf-nsp
Enter string: 123456789012345
123456789012345

unix> . /buf-nsp
Enter string: 123456789012345
Segmentation fault (core dumped)

16

W UNIVERSITY of WASHINGTON

L15: Buffer Overflows

Buffer Overflow Disassembly (buf-nsp)

CSE351, Spring 2022

echo:
0000000000401146 <echo>:
401146: 48 83 ec 18 sub $0x18,%rsp

. calls printf

401159: 48 8d 7c 24 08 lea 0x8 (%rsp), srdi
40115e: b8 00 00 00 0O mov $0x0, $eax
401163: e8 e8 fe ff ff callg 401050 <gets@plt>
401168: 48 8d 7c 24 08 lea 0x8 (%$rsp), $rdi
40116d: e8 be fe ff ff callg 401030 <puts@plt>
401172: 48 83 c4 18 add S0x18, %rsp
401176: c3 retq

call_echo:

0000000000401177 <call echo>:
401177: 48 83 ec 08 sub S0x8, %rsp
40117b: b8 00 00 00 00 mov $0x0, $eax
401180: e8 cl1 ff ff ff callg 401146 <echo>
401185: 48 83 c4 08 add $0x8, %rsp
401189: N\ c3 retq

N

return address

17

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflow Stack

Before call to gets

/* Echo Line */
Stack frame for void echo ()

call echo {
T char buf[8]; /* Way too small! */

gets (buf) ;

Return address puts (buf) ;
(8 bytes) }
8 bytes unused echo:

subg $24, S%rsp

7 6 5 4 T

Ljue. Loljie] leag 8 (%rsp), %rdi
[3T[[2]|[11|{[0]] put mov $0x0, $eax
call gets

8 bytes unused

Note: addresses increasing right-to-left, bottom-to-top

18

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflow Example

Before call to gets

void echo () echo:
Stack frame for { subg $24, %rsp
call echo char buf[8]; ..
- gets (buf) ; leag 8 (%rsp), %rdi
mov S0x0, $eax
00 | 0|0 B } call gets
0040|1185

call_echo:

8 bytes unused o
401180: callg 401146 <echo>
(711161 [5]][4] 401185: add $S0x8,%rsp

[31|1[21|[21|[0]| pbur

8 bytes unused

—3Irsp

19

W UNIVERSITY of WASHINGTON

L15: Buffer Overflows

Buffer Overflow Example #1

After call to gets

Stack frame for
call echo

00 (00|00 |00
00|40 (11|85
0035|3433
3213113039
837]36|35
4133 (32|31

8 bytes unused

Note: Digit “N” is
just Ox3N in ASCII!

buf

CSE351, Spring 2022

void echo ()

{

char buf[8];
gets (buf) ;

}

call_echo:

echo:
subqgq
leaq
mov
call

$24, %rsp

8 (5rsp),
S0x0, $eax
gets

Srdi

401180:
401185

callq
add

401146 <echo>

$0x8,%rsp

—3Irsp

unix> ./buf-nsp
123456789012345

Enter string:
123456789012345

Overflowed buffer, but did not corrupt state

20

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflow Example #2

After call to gets
void echo () echo:
Stack frame for { subg $24, %rsp
call echo char buf[8]; ..
N gets (buf) ; leag 8 (%rsp), %rdi
mov S0x0, $eax
0000 |00|0O0 | call gets
0040 (|11]|00
call_echo:

3635|3433
3213113039

401180: callg 401146 <echo>
38 37]3635 401185: add $0x8,3rsp
34 33132 |31 | pus

8 bytes unused

—3Irsp

unix> ./buf-nsp
Enter string: 123456789012345

Overflowed buffer and corrupted return pointer
21

W UNIVERSITY of WASHINGTON

L15: Buffer Overflows CSE351, Spring 2022

Buffer Overflow Example #2 Explained

After return from echo

Stack frame for
call echo

00

00

00

00

00

40

11

00

36

35

34

33

32

31

30

39

38

37

36

35

34

33

32

31

8 bytes unused

—3Irsp

buf

00000000004010d0 <register tm clones>:
4010d0: 1lea O0x2f6l (%rip), $rdi
4010d7: 1lea Ox2fba(%rip), $rsi
4010de: sub $rdi, $rsi
4010el: mov $rsi, Srax
4010e4: shr SO0x3f, %rsi
4010e8: sar $0x3, %rax
4010ec: add $rax, srsi

4010ef: sar $rsi
4010f2: Jje 401108

4010f4: mov O0x2efd (%rip), 3rax
4010fb: test $rax, srax

4010fe: Je 401108
401100: jmpqg *Srax
401102: nopw 0x0 (%rax, srax, 1)

401108: retqg

“Returns” to a validinstruction, but bad indirect jump
so program signals SIGSEGV, Segmentation fault

22

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Malicious Use of Buffer Overflow:
Code Injection Attacks stackafter calito gets ()

High Addresses

\
void foo () { > too
bar () ; stack frame
A:... <+«—— return address A J
int bar () { data written
] pad bar
char buffe4]; by gets () < stack frame
gets (buf) ;
. .. exploit code
return ...; buf starts here—> B —»_ J
}

Low Addresses

Input string contains byte representation of executable code
Overwrite return address A with address of buffer B

When bar () executes ret, will jump to exploit code
23

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Practice Question

+ smash me is vulnerable to stack smashing!

+» What is the minimum number of characters that
gets must read in order for us to change the return

address to a stack address?
" For example: (0Ox00 00 7f ff ca fe fO 0d)

Previous
stack frame
smash me:
00100]00]00 subg $0x40, %rsp B. 30

0014005 |d1l

1;37;1';1 16 (5rsp), S%Srdi C. 51
call gets D. 54
E. We’'re lost...

24

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Exploits Based on Buffer Overflows

Buffer overflow bugs can allow attackers to
execute arbitrary code on victim machines

+ Distressingly common in real programs

= Programmers keep making the same mistakes ®
= Recent measures make these attacks much more difficult

+» Examples across the decades
® QOriginal “Internet worm” (1988)

= Heartbleed (2014, affected 17% of servers)
- Similar issue in Cloudbleed (2017)

®= Hacking embedded devices
- Cars, Smart homes, Planes

25

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Example: the original Internet worm (1988)

+ Exploited a few vulnerabilities to spread

= Early versions of the finger server (fingerd) used gets ()
to read the argument sent by the client:
« finger droh@cs.cmu.edu

" Worm attacked fingerd server with phony argument:
« finger "exploit-code padding new-return-addr"

- Exploit code: executed a root shell on the victim machine with a
direct connection to the attacker

«» Scanned for other machines to attack

" |Invaded ~6000 computersin hours (10% of the Internet)
- see June 1989 article in Comm. of the ACM

" The author of the worm (Robert Morris*) was prosecuted...

26

http://dl.acm.org/citation.cfm?id=66095

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Example: Heartbleed (2014)
HOLW THE. HEARTBLEED BUG WJORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY *POTATO" (6 LETTERS). e asciur s S L

o
O

lo
ser Meg wants these 6 letters: POTATO.

O
O

27

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Example: Heartbleed (2014)

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

J

HMmM. .

28

W UNIVERSITY of WASHINGTON

L15: Buffer Overflows

Example: Heartbleed (2014)

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "HAT" (500 LETTERS),

/

ser Meg wants these 500 letters: HAT.

ts to set server’s master key to "148
35038534". Isabel wants pages about "
snakes but not too long". User Karen
wants to"change account password to "

ser Meg wants these 500 letters: HAT.

CSE351, Spring 2022

29

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

Heartbleed Details

D)

L)

Buffer over-read in OpenSSL &/ Heartbeat - Normal usage

Server, send me
= Open source security library s 4 eterord
' + bird
1 . H llb du
" Bugin asmall range of versions Clsnt "

“Heartbeat” packet

= Specifies length of message

= Server echoes it back

= Library just “trusted” this length

Server, send me |
= Allowed attackers to read contents | Eﬁj%?g_:;;fe \
of memory anywhere they wanted Gt '
Est. 17% of Internet affected
= “Catastrophic”

= Github, Yahoo, Stack Overflow,
Amazon AWS, ...

ﬁ? Heartbeat - Malicious usage

bird. Server
master key is
31431498531054.
User Carol wants
to change
password to

"password 123"...
o

CSE351, Spring 2022

Server

Server

30

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Hacking Cars (2010)

+» UW CSE research demonstrated wirelessly hacking a
car using buffer overflow

" http://www.autosec.org/pubs/cars-oakland2010.pdf

+» Overwrote the onboard control system’s code
= Disable brakes, unlock doors, turn engine on/off

31

http://www.autosec.org/pubs/cars-oakland2010.pdf

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Dealing with buffer overflow attacks

1) Employ system-level protections
2) Avoid overflow vulnerabilities

3) Have compiler use “stack canaries”

32

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

1) System-Level Protections

Stack after call

>

D)

o,

- Non-executable code segments

togets ()

+ |In traditional x86, can mark)
region of memory as either \ 0
“read-only” or “writeable” frame
= Can execute anything readable ar <

+» x86-64 added explicit “execute”
permission Sstge"‘g'stt(e)” { |Pad par

+» Stack marked as non-executable exploit frame
= Do NOT execute code in Stack, B —\ Lcode)

Static Data, or Heap regions
= Hardware support needed

Any attempt to execute this code will fail
33

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

1) System-Level Protections

Stack after call

<~ Non-executable code segments to gets ()

"= Wait, doesn’t this fix everything?

« Works well, but can’t always use it
+» Many embedded devices do not -
. . B
have this protection
" e.g., cars, smart homes, data written y pad
pacemakers by gets ()
+ Some exploits still work! e"g'°'t
B —\ Lcode

= Return-oriented programming
= Return to libc attack

= JIT-spray attack

Any attempt to execute this code will fail

\

'\

CSE351, Spring 2022

foo
> stack
frame

bar
> stack
frame

34

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

1) System-Level Protections

+» Randomized stack offsets

= At start of program, allocate random amount Random <

of space on stack allocation
= Shifts stack addresses for entire program T mains
- Addresses will vary from one run to another stack frame
= Makes it difficult for hacker to predict Other
beginning of inserted code functions’

. stack frames
«» Example: Address of variable 1ocal for

. . ?

when Slide 5 code executed 3 times: —
0x7f£fd19d3f8ac pad
Ox7ffe8ado’2c2c exploit

= Stack repositioned each time program executes

35

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

CSE351, Spring 2022

2) Avoid Overflow Vulnerabilities in Code

/* Echo Line */

void echo ()

{
char buf([8]; /* Way too small! */
fgets (buf, 8, stdin);
puts (buf) ;

}

« Use library routines that limit string lengths

" fgets instead of gets (2" argument to fgets sets limit)
" strncpy instead of strcpy

" Don’tuse scanf with $s conversion specification
- Use fgets toread the string

- Oruse 3ns where n is a suitable integer

36

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

2) Avoid Overflow Vulnerabilities in Code

+ Alternatively, don’t use C - use a language that does
array index bounds check

= Buffer overflow is impossible in Java

 ArraylndexOutOfBoundsException

= Rustlanguage was designed with security in mind

- Panics on index out of bounds, plus more protections

37

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

3) Stack Canaries

+ Basic Idea: place special value (“canary”) on stack just
beyond buffer

= Secret value that is randomized before main()

= Placed between buffer and return address

= Check for corruption before exiting function
+» GCC implementation

" —-fstack-protector

unix>. /buf unix> . /buf
Enter string: 12345678 Enter string: 123456789

12345678

*** stack smashing detected ***

CSE351, Spring 2022

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

This is extra
Protected Buffer Disassembly (bu £)| (non-testable)
material
echo:

401156: push srbx

401157: sub $0x10, $rsp

40115b: mov S0x28, $ebx

401160: mov $fs: (%rbx), %Srax

401164: mov $rax,0x8 (srsp)

401169: xor Teax, seax

“ . call printf
40117d: callg 401060 <gets@plt>

401182: mov Srsp, srdi

401185: callg 401030 <puts@plt>
40118a: mov 0x8 (%rsp), srax
40118f: xor $fs: (5rbx), Srax
401193: Jne 401190 <echo+0x45>

401195: add $0x10, $rsp

401199: pop Srbx

4011%9a: retqg

40119b: callg 401040 < stack chk fail@plt>

39

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

This is extra

Setting Up Canary (non-testable)

material

Before call to gets

/* Echo Line */
Stack frame for void echo ()
call echo {
- char buf[8]; /* Way too small! */
gets (buf) ;
Return address puts (buf) ;
(8 bytes) }
d A
Segment register
echo: (don’t worry about it))
Canary movqgq $fs:40, %rax # Get canary
(8 bytes) movq $rax, 8(5rsp) # Place on stack
xorl %$eax, %eax # Erase canary
[71{l6]|[5]|[4]

[SHIZ2[1]O0]| bur «—%rsp

40

W UNIVERSITY of WASHINGTON L15: Buffer Overflows

CSE351, Spring 2022

This is extra
Checking Canary (non-testable)
material
After call to gets
/* Echo Line */
Stack frame for void echo ()
call echo {
- char buf[8]; /* Way too small! */
gets (buf) ;
Return address puts (buf) ;
(8 bytes) }
echo:
movq 8 (%rsp), %rax # retrieve from Stack
Canary xorq %fs:40, S%rax # compare to canary
(8 bytes) jne .L4 # 1f not same, FAIL
00]37(36|35 .L4: call stack chk fail
34 133|132 |31 | pur «—3%rsp

Input: 1234567

41

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Summary of Prevention Measures

1) Employ system-level protections
= Code on the Stack is not executable

= Randomized Stack offsets

2) Avoid overflow vulnerabilities
= Uselibrary routines that limit string lengths

= Use alanguage that makes them impossible

3) Have compiler use “stack canaries”

42

W UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE351, Spring 2022

Think this is cool?

+ You'll love Lab 3 &

= Some parts must be run through GDB to disable certain
security features

+» Take CSE 484 (Security)
= Several different kinds of buffer overflow exploits
= Many ways to counter them

% Nintendo fun!

= Using glitches to rewrite code:
https://www.youtube.com/watch?v=TqK-2jUQBUY

= Flappy Bird in Mario:
https://www.youtube.com/watch?v=hB6eY73sLV0

43

https://www.youtube.com/watch?v=TqK‐2jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV0

